怎么求非齐次线性方程组的通解法则

2024年11月17日 07:22
有5个网友回答
网友(1):

非齐次线性方程组Ax=b的求解方法:

1、对增广矩阵作初等行变换,化为阶梯形矩阵;

2、求出导出组Ax=0的一个基础解系;

3、求非齐次线性方程组Ax=b的一个特解(为简捷,可令自由变量全为0);

4、按解的结构 ξ(特解)+k1a1+k2a2+…+krar(基础解系) 写出通解。

例:

扩展资料:

非齐次线性方程组Ax=b有解的充分必要条件是:系数矩阵的秩等于增广矩阵的秩,即rank(A)=rank(A, b)(否则为无解)。

非齐次线性方程组有唯一解的充要条件是rank(A)=n。

非齐次线性方程组有无穷多解的充要条件是rank(A)

非齐次线性方程组的通解=齐次线性方程组的通解+非齐次线性方程组的一个特解(η=ζ+η*)。

参考资料来源:百度百科—非齐次线性方程组



网友(2):

非齐次线性方程组Ax=b的求解方法:

1、对增广矩阵作初等行变换,化为阶梯形矩阵;

2、求出导出组Ax=0的一个基础解系;

3、求非齐次线性方程组Ax=b的一个特解。(为简捷,可令自由变量全为0)

4、按解的结构 ξ(特解)+k1a1+k2a2+…+krar(基础解系) 写出通解。

注意:当方程组中含有参数时,分析讨论要严谨不要丢情况,此时的特解往往比较繁。

扩展资料:

对增广矩阵B施行初等行变换化为行阶梯形。若R(A)

当非齐次线性方程组有解时,解唯一的充要条件是对应的齐次线性方程组只有零解;解无穷多的充要条件是对应齐次线性方程组有非零解。

但反之当非齐次线性方程组的导出组仅有零解和有非零解时,不一定原方程组有唯一解或无穷解,事实上,此时方程组不一定有 ,即不一定有解。

参考资料来源:百度百科--非齐次线性方程组

网友(3):

1、对增广矩阵B施行初等行变换化为行阶梯形。若R(A)

2、若R(A)=R(B),则进一步将B化为行最简形。

3、设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数分别等于

即可写出含n-r个参数的通解。

扩展资料:

非齐次线性方程组的通解=齐次线性方程组的通解+非齐次线性方程组的一个特解(η=ζ+η*)

非齐次线性方程组Ax=b有解的充分必要条件是:系数矩阵的秩等于增广矩阵的秩,即rank(A)=rank(A, b)(否则为无解)。

非齐次线性方程组有唯一解的充要条件是rank(A)=n。

非齐次线性方程组有无穷多解的充要条件是rank(A)

网友(4):

非齐次线性方程组Ax=b的求解方法:
1、对增广矩阵作初等行变换,化为阶梯形矩阵;
2、求出导出组Ax=0的一个基础解系;
3、求非齐次线性方程组Ax=b的一个特解(为简捷,可令自由变量全为0)
4、按解的结构 ξ(特解)+k1a1+k2a2+…+krar(基础解系) 写出通解.
注意:当方程组中含有参数时,分析讨论要严谨不要丢情况,此时的特解往往比较繁.

网友(5):

非齐次线性方程组求通解