本题重点就是计算下面这个不定积分:
∫1/(x²+y²)^(3/2) dy
其余的全部为常数,提出去就行了,注意 x 也是常数。常数为:λx/(4πε₀)
令y=xtanu,则(x²+y²)^(3/2)=x³sec³u,dy=xsec²udu
=∫xsec²u/(x³sec³u) du
=(1/x²)∫ cosu du
=(1/x²)sinu+C
由于tanu=y/x,则sinu=y/√(x²+y²)
=y/[x²√(x²+y²)]+C
然后y用上下限代入得:
y/[x²√(x²+y²)] |[-L/2→L/2]
=L/[x²√(x²+L²/4)]
然后与前面的系数λx/(4πε₀)相乘就行了。