cosB/cosC=-b/(2a+c)=-sinB/(2sinA+sinC),∴2sinAcosB+cosBsinC=-sinBcosC,∴2sinAcosB+sin(B+C)=0,sin(B+C)=sinA≠0,∴cosB=-1/2,B=120°,A+C=60°,|A-C|∈[0°,60°)∴a+c=b(sinA+sinC)/sinB=2√2sin[(A+C)/2]cos[(A-C)/2]/(√3/2)=(2√6/3)cos[(A-C)/2]∈(√2,2√6/3].