数学题:在三角形ABC中a,b,a分别是A,B,C的对边,且cosB⼀cosc=-b⼀2a+c.

2024年11月22日 00:01
有1个网友回答
网友(1):

cosC/cosB=-(2sinA+sinC)/sinB 化简整理得:
sinB×cosC=-cosB×(2sinA+sinC)
sinB ×cosC+cosB× sinC=-2cosB×sinA
sin(B+C)=-2cosB×sinA
sinA=-2cosB×sinA
cosB=-1/2
B=120°
2、根据余弦定理b^2=a^2+c^2-2ac×cosB=(a+c)^2-2ac-2ac×cosB
代入已知条件得:13=16-2ac(1+cosB)=16-ac, ac=3
三角形的面积为:1/2ac×sinB=1/2×3×√3/2=3√3/4