设∑为平面x+y+z=1在第一卦限中的部分的上侧,则曲面积分∫∫(x+y)dzdx=?

2024年11月15日 11:00
有3个网友回答
网友(1):

等于1/3。

可以直接在XOZ平面上做:y = 0, z = 1-x

∫∫(x+y)dzdx

= ∫[0,1]dx ∫[0,1-x] (1-z)dz

= ∫[0,1] (1/2)(1-x^2) dx

= 1/3

扩展资料:

一型曲面积分共有三种计算方法,且不需考虑正负的问题。以直角计算为主,奇偶性、对称性为辅助。

(一)直接计算法——直角坐标下

因为是在曲面上进行积分,所以曲面方程Z=Z(x, y)可以直接带入方程中。带入后消去了z,曲面积分转变成了在D(曲面在xoy上的投影)上的二重积分。

由于  

 故积分表达式可化为 

 能把曲线/曲面方程带入积分函数计算的只有两种:曲线积分、曲面积分。

不能代入计算的是:重积分

(二)利用奇偶性

被积函数若是关于x的奇函数,且积分曲面关于yoz前后对称,那么该积分等于0;

若被积函数若是关于x的偶函数,且积分曲面关于yoz前后对称,那么该积分等于二倍的对yoz前边曲面上的积分。

若对于y、z也有奇偶性,同理。

(三)利用对称性(轮换性)

若积分曲面x,y,z位置可以对调,积分函数内x,y,z也可以互换,最后积分结果不变。

网友(2):

如图所示:

网友(3):

可以直接在XOZ平面上做:y = 0, z = 1-x
∫∫(x+y)dzdx
= ∫[0,1]dx ∫[0,1-x] (1-z)dz
= ∫[0,1] (1/2)(1-x^2) dx
= 1/3