求导数y=(arctan1⼀x)^2

求导数y=(arctan1/x)^2
2024年11月20日 15:41
有1个网友回答
网友(1):

y'=(-2arctan1/x)/x^2*{1/[1+(1/x)^2]}

=(-2arctan1/x)/x^2*x^2/(x^2+1)

=-(2arctan1/x)/(x^2+1)