正弦余弦正切余切不是只指直角三角形,对于任意三角形都是适用的。
常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。
扩展资料:
同角三角函数的基本关系式
倒数关系:tanα ·cotα=1、sinα ·cscα=1、cosα ·secα=1;
商的关系: sinα/cosα=tanα=secα/cscα、cosα/sinα=cotα=cscα/secα;
和的关系:sin²α+cos²α=1、1+tan²α=sec²α、1+cot²α=csc²α;
平方关系:sin²α+cos²α=1。
常用的和角公式
sin(α+β)=sinαcosβ+ sinβcosα
sin(α-β)=sinαcosβ-sinB*cosα
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ) / (1-tanαtanβ)
tan(α-β)=(tanα-tanβ) / (1+tanαtanβ)
正弦余弦正切余切不是只指直角三角形,任意的三角形也能用。
分析过程如下:
正弦余弦正切余切,平时用直角三角形来讲解,是因为直角三角形最形象易懂。对于任意的三角形的一个角,其正弦余弦正切余切都是存在的。
只不过对于任意的三角形不能用直角三角形的特殊形式,如:sinA=对/斜。放在一般的三角形中sinA不等于对边和斜边的比。
扩展资料:
余弦定理是解三角形中的一个重要定理,可应用于以下三种需求:
当已知三角形的两边及其夹角,可由余弦定理得出已知角的对边。
当已知三角形的三边,可以由余弦定理得到三角形的三个内角。
当已知三角形的三边,可以由余弦定理得到三角形的面积。
同角三角函数的基本关系式
倒数关系:tanα ·cotα=1、sinα ·cscα=1、cosα ·secα=1;
商的关系: sinα/cosα=tanα=secα/cscα、cosα/sinα=cotα=cscα/secα;
和的关系:sin²α+cos²α=1、1+tan²α=sec²α、1+cot²α=csc²α;
平方关系:sin²α+cos²α=1。
正弦余弦正切余切针对的是角度,所以适用于所有的三角形和其他形状
平时用直角三角形来讲解,是因为直角三角形最形象易懂
这些都只和角度有关 和三角形没关系。做直角三角形只是为了计算这些正弦余弦的具体数值。
等你再高几级就能学到了
三角函数,就是跟角度有关的函数。