如何理解数列极限的定义?

2024年11月22日 14:44
有1个网友回答
网友(1):

极限可分为数列极限和函数极限,学习微积分学,首要的一步就是要理解到,“极限”引入的必要性:因为,代数是人们已经熟悉的概念,但是,代数无法处理“无限”的概念。

所以为了要利用代数处理代表无限的量,于是精心构造了“极限”的概念。在“极限”的定义中,我们可以知道,这个概念绕过了用一个数除以0的麻烦,而引入了一个过程任意小量。

应用

日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。

若为等差数列,且有an=m,am=n,则am+n=0。

其于数学的中的应用,可举例:快速算出从23到132之间6的整倍数有多少个,算法不止一种,这里介绍用数列算令等差数列首项a1=24(24为6的4倍),等差d=6;于是令an= 24+6(n-1)<=132 即可解出n=19。