对数函数的运算法则

2024年11月28日 20:47
有3个网友回答
网友(1):

最低0.27元/天开通百度文库会员,可在文库查看完整内容>
原发布者:V空心_vicious
性质①loga(1)=0;②loga(a)=1;③负数与零无对数.2对数恒等式a^logaN=N(a>0,a≠1)3运算法则①loga(MN)=logaM+logaN;②loga(M/N)=logaM-logaN;③对logaM中M的n次方有=nlogaM;如果a=e^m,则m为数a的自然对数,即lna=m,e=2.718281828…为自然对数的底。定义:若a^n=b(a>0且a≠1)则n=log(a)(b)基本性质:1、a^(log(a)(b))=b2、log(a)(MN)=log(a)(M)+log(a)(N);3、log(a)(M÷N)=log(a)(M)-log(a)(N);4、log(a)(M^n)=nlog(a)(M)5、log(a^n)M=1/nlog(a)(M)推导:1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。2、MN=M×N由基本性质1(换掉M和N)a^[log(a)(MN)]=a^[log(a)(M)]×a^[log(a)(N)]由指数的性质a^[log(a)(MN)]=a^{[log(a)(M)]+[log(a)(N)]}又因为指数函数是单调函数,所以log(a)(MN)=log(a)(M)+log(a)(N)3、与(2)类似处理M/N=M÷N由基本性质1(换掉M和N)a^[log(a)(M÷N)]=a^[log(a)(M)]÷a^[log(a)(N)]由指数的性质a^[log(a)(M÷N)]=a^{[log(a)(M)]-[log(a)(N)]}又因为指数函数是单调函数,所以log(a)(M÷N)=log(a)(M)-log(a)(N)4、与(2)类似处理M^n=M^n由基本性质1(换掉M)a^[log(a)(M^n)]={a^[log(a)(M)]}^n由指数的性质a^[log(a)(M^n)]=a^{[log(a)(M)]*n}又因为指数函数是单调函数,所以log(a)(M^n)=nlog(a)(M)基本性质4推广log(a^n)(b^m)=m/n*[log(a)(b)]推导如下:由换底公式(换底公式见下面)[lnx是log(e)(x),e称

网友(2):

网友(3):

由指数和对数的互相转化关系可得出:
1.两个正数的积的对数,等于同一底数的这两个数的对数的和,即
2.两个正数商的对数,等于同一底数的被除数的对数减去除数对数的差,即
3一个正数幂的对数,等于幂的底数的对数乘以幂的指数,即
4.若式中幂指数则有以下的正数的算术根的对数运算法则:一个正数的算术根的对数,等于被开方数的对数除以根指数,即
扩展资料:
对数函数y=logax
的定义域是{x
丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0
,得到x>1/2且x≠1,即其定义域为
{x
丨x>1/2且x≠1}
在实数域中,真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于等于零(若为负数,则值为虚数),底数则要大于0且不为1。
在一个普通对数式里
a<0,或=1
的时候是会有相应b的值。但是,根据对数定义:log以a为底a的对数;如果a=1或=0那么log以a为底a的对数就可以等于一切实数。(比如log11也可以等于2,3,4,5,等等)
如果不等于1的正实数,这个定义可以扩展到在一个域中的任何实数
(参见幂)。类似的,对数函数可以定义于任何正实数。对于不等于1的每个正底数
,有一个对数函数和一个指数函数,它们互为反函数。
参考资料:百度百科——对数运算法则