(1)在△ABC中,由(2a-c)cosB=bcosC以及正弦定理可得
2sinAcosB-sinCcosB=sinBcosC,即 2sinAcosB=sin(B+C)=sinA,
求得cosB=
,可得 B=1 2
.π 3
(2)若b=
,a+c=4,由余弦定理可得 cosB=
7
=
a2+c2?b2
2ac
=
(a+c)2?7 2ac
=16?7 2ac
,1 2
故有ac=3,
故△ABC的面积S=
ac?sinB=1 2
×3×sin1 2
=π 3
.3
3
4