什么是加法分配律、加法结合律和加法交换律? 。

2024-10-30 19:34:09
有5个网友回答
网友(1):

1、加法交换律

交换两个加数的位置,和不变。这叫做加法交换律。

A+B=B+A

A+B+C=A+C+B=C+B+A

例:8+1=1+8=9 100+2=2+100=102

2、加法结合律

先把前两个数相加,或者把后两个数相加,和不变,这叫做加法结合律。

(A+B)+C=A+(B+C)

例:7+4+1=7+(4+1)=(7+4)+1=12 10-5+2=(10+2)-5=7

加法不存在分配律。

扩展资料

1、证明:加法结合律(a+b)+c = a+(b+c)

当a = 0时,(a+b)+c = (0+b)+c = b+c = 0+(b+c) = a+(b+c)

假如对于a = n成立,及(n+b)+c = n+(b+c),那么对于a = n+1 = n'时

(a+b)+c = (n'+b)+c = (n+b)'+c = ((n+b)+c)' = (n+(b+c))' = n'+(b+c) = a+(b+c)

所以加法结合律成立。

2、证明:加法交换律 a+b = b+a

首先证明0+m = m+0 = m

由加法的运算规则1,有0+m = m

所以0+0 = 0

然后1+0 = 0'+0 = (0+0)' = 0' = 1

所以对m = 0和1,都有m+0 = m

利用数学归纳法,假设m = n时,n+0 = n成立,那么m = n+1时

m+0 = n'+0 = (n+0)' = n' = n+1 = m

于是,0+m = m+0 = m成立

接着,数学归纳法证明m+n = n+m

对于m = 0,0+n = n+0,我们上面已经证明了,这是多米诺骨牌的第一张牌。这一张牌已经倒下了。

对于m = 1,1+n = 0'+n = (0+n)' = n' = n+1,第二张牌也倒下了。

然后我们需要证明如果一张多米诺骨牌倒下了,那么能保证他的下一张也会倒下。

假设m = k时,k+n = n+k,那么当m = k+1时

m+n = k+1+n = k'+n = (k+n)' = (n+k)' = n'+k = (n+1)+k = n+(1+k) = n+(k+1) = n+m (利用了加法结合律)

综上所述,加法交换律成立。

网友(2):

加法交换律

交换两个加数的位置,和不变。这叫做加法交换律。

A+B=B+A

A+B+C=A+C+B=C+B+A

加法结合律

先把前两个数相加,或者把后两个数相加,和不变,这叫做加法结合律。

(A+B)+C=A+(B+C)

证明

下面从皮亚诺公理体系出发,使用数学归纳法,给出加法结合律的一个严格证明。

其中,S(k)表示k的后继序数。简单来说S(k)=k+1。

要证明(m+n)+k=m+(n+k),对k进行归纳。

k=0,由加法定义得(m+n)+0=m+n和m+(n+0)=m+n,因此结合律对k=0成立。

假设结论对k成立,即(m+n)+k=m+(n+k)。下证结论对S(k)成立。

由加法定义可得:(m+n)+S(k)=S((m+n)+k);

以及m+(n+S(k))=m+S(n+k)=S(m+(n+k))

又由归纳假设(m+n)+k=m+(n+k)

因此S((m+n)+k)=S(m+(n+k))

故(m+n)+S(k)=m+(n+S(k))

故结论对S(k)亦成立,由归纳公理,结论得证。

网友(3):

加法交换律: a + b = b +a
加法结合律:
a + b + c = a +(b +c)
你好,加法是没有分配律的,只有乘法才有分配律。加法交换律和结合律对于乘法同样适用
乘法分配律:
a × b + a × c = a ×(b +c)望采纳,谢谢

网友(4):

网友(5):