泰勒公式和等价无穷小代换有什么区别

2024年11月16日 21:02
有1个网友回答
网友(1):

1、等价无穷小代换不是正宗的、独立的、国际认可的解题方法;

2、等价无穷小代换,是将麦克劳林级数展开式,窃取了第一项后,
拿来鱼目混珠的方法,是巧立名目的偷梁换柱的勾当!

3、麦克劳林级数展开,是将函数在原点附近展开;
泰勒级数展开,是将函数在其他点的附近展开。

我们的教学历来都是将两者混为一谈;
国际教学中,也有混为一谈的情况发生,但没有我们这样严重。

4、等价无穷小代换的理论基础是麦克劳林级数展开,
麦克劳林级数展开,没有自残自宫条件;
等价无穷小代换,有自残自宫条件:有加减时不能使用。

其实在加减时,有时可以,有时不可以。

因为我们在引入等价无穷小代换时是牵强附会的,
所以前倨后恭、始乱终弃是必然的,是我们的性格决定的。

5、【楼主问题的解答】:
A、用麦克劳林级数展开公式、用泰勒级数展开公式,放之海内外而皆准;
用等价无穷小代换,放之海内时而准、时而不准,放之海外而皆不准。

B、泰勒级数、麦克劳林级数,是严格的、普遍的,没有穿凿附会的自我阉割条款;
用投机取巧的、偷鸡摸狗的、鱼目混珠的等价无穷小代换时,有自我阉割条款:
【在加减时,不可以使用等价无穷小代换】。

这句话是掩耳盗铃、自欺欺人的;是言不由衷、色厉内荏的;
是出尔反尔、自打耳光的。
我们在有加减时,有时照样进行等价无穷小代换。