(1)
正弦定理
3/sinA=2*√6/sinB
又 B=2A
从而 3/sinA=2*√6/sin2A 3/sinA=2*√6/sin2A
3/sinA=2*√6/(2sinAcosA)
则 cosA=√6/3
(2)
由cosA=√6/3得 sinA=√3/伍昌3
又 角举橘缺B=2倍角A
则 sinB=sin2A=2sinA*cosA=2*1/3*√6/3=2√2/3
cosB=1/3
从而 sinC=sin[180度-(A+B)]=sin(A+B)
=sinA*cosB+cosA*sinB
=√正辩3/3*1/3+√6/3*2√2/3
=5√3/9
由a/sinA=c/sinC
得 c=a*sinC/sinA=3*5√3/9/(√3/3)
=√3/3*5/(√3/3
=5