(1)设{an}的公差为d,则Sn=a1+a2+…+an=a1+(a1+d)+…+[a1+(n-1)d]…(2分)
又Sn=an+(an-d)+…+[an-(n-1)d],…(4分)
∴2Sn=n(a1+an),…(6分)
∴Sn=
. …(7分)n(a1+an) 2
(2)由已知得an=n.
从而bn+1=bn+2n.
即bn+1-bn=2n…(9分)
bn=(bn-bn-1)+(bn-1-bn-2)+…(b2-b1)+b1=2n-1+2n-2+…+2+1=
=2n-1.…(11分)1?2n
1?2
数列{bn}的前n项和Sn=b1+b2+…+b2+b1=2-1+22-1+…+2n-1=
?n=2n+1-2-n.2(1?2n) 1?2