x=ln√(1+t^2) ,y=arctantdx/dt=1/√(1+t^2)*t/√(1+t^2)=t/(1+t^2),dy/dt=1/(1+t^2),所以dy/dx=1/t,d^2y/dx^2=[d(1/t)/dt]/(dx/dt)=(-1/t^2)/[t/(1+t^2)]=-(1+t^2)/t^3.