1=0.999999999,9的循环吗

2024年11月19日 07:28
有4个网友回答
网友(1):

这是一道非常著名的问题。我想肯定有人会说不相等。但请相信我和那些说它们相等的同志,他们的的确确是相等的。
证明的方法有很多:

第一种,最简单的:
设x=0.9999999999999……,那么10x=9.99999999999……,得到
10x-x=9
得x=1

第二种,也很简单的:
设x=0.999999999999……,那么x/3=0.333333333333……=1/3,得
x/3=1/3
x=1

第三种,稍微要绕一点脑筋:
你用竖式计算1除以1(竖式应该会吧,小学学过的),不同的是一开始不要直接商1,而要商0,那么余数是1,添加一个0变成10,然后商9,10-9=1,又得到余数是1,再按照上面的方法进行计算,就会算出来1/1=0.9999999……

第四种,可以用极限来做:
等比数列的求和公式是[a1(1-q^n)]/(1-q),那么当q<1且n->无穷大的时候,这个式子的极限就是a1/(1-q)。由于循环小数0.aaaaaaaaa……=a/10+a/100+a/1000+a/10000+……,它的每一个加数刚好构成一个无穷的等比数列,而且q=1/10,那么就可以用a1/(1-q)计算0.99999999……,此时a1=0.9,q=1/10,很容易就可以得到0.9999999999……=0.9/(1-1/10)=1

以上就是常见的证明0.99999999999……=1的方法。方法还有很多种。最后结果都是:0.999999999……=1。

另外,我还可以明确地告诉你,以上的推理过程都是比较严密的,不要相信所谓的0.3333333333……只是约等于1/3,0.9999999999……<1。至少在我们所使用的数学中,0.999999999……=1。

你也可以在百度上查找有关的资料,特别是百度知道上有过这种争论。

最后,我在明确地告诉你,同时也是告诉所有看过这些话的人,0.999999999999999……=1。

网友(2):

对的,是等于的,这是某一年的高考题,证明如下:1=1/3 * 31/3=0.3333....3的循环0.3333.....3的循环*3=0.9999.....9的循环所以1/3 * 3 =0.99999v.....9的循环=1

网友(3):

取近似值也只是约等于,3分之1就是循环小数…0.333333333333~

网友(4):