解答:解:连接OA,∵点O为边AB,AC的垂直平分线的交点,∴OA=OB=OC,∴∠OAB=∠OBA,∠OAC=∠OCA,∴∠OBA+∠OCA=∠A,在△ABC中,∠OBC+∠OCB=180°-(∠OAB+∠OBA+∠OAC+∠OCA)=180°-2∠A,在△OBC中,∠BOC=180°-(∠OBC+∠OCB)=180°-(180°-2∠A)=2∠A,即∠BOC=2∠A.