以D为原点建立如图所示的坐标系,
设存在点P(0,0,z),
=(-a,0,z),AP
=(-a,a,0),AC
=(a,a,a),DB1
∵B1D⊥面PAC,∴
?DB1
=0,AP
?DB1
=0.∴-a2+az=0.AC
∴z=a,即点P与D1重合.
∴点P与D1重合时,DB1⊥面PAC.
存在,P点与D1点重合,即:B1D⊥面D1AC证明:AC⊥BD,AC⊥DD1,所以,AC⊥面BDD1B1,所以,AC⊥B1DAD1⊥A1D,AD1⊥A1B1,所以,AD1⊥面DA1B1,所以,AD1⊥B1D所以,B1D⊥面D1AC