求大神解答一道第二类曲面积分问题!!

2024年11月20日 06:27
有1个网友回答
网友(1):

这个题目这样解,
根据单位法向量n和曲面微元的关系,nds=(cosα,cosβ,cosγ)ds=(dydz, dzdx, dxdy)
所以cosαds=dydz,cosβds=dzdx,cosγds=dxdy
所以原积分=∫∫∑ x^3dydz+y^3dzdx+z^3dxdy

然后补上z=-1的下平面处的圆∑1x^2+y^2=1得到,就可以用高斯定理了

所以,
原积分=∫∫∑+∑1 x^3dydz+y^3dzdx+z^3dxdy -∫∫∑1 x^3dydz+y^3dzdx+z^3dxdy
=∫∫∫3(x^2+y^2+z^2)dV -∫∫[-(-1)]dxdy
=3∫∫∫(r^2+z^2)rdrdθdz -π
=9π/10-π
= -π/10

如果那个9π/10是个负的,那么就是-19π/10
可是这是不可能的,因为积分函数x^2+y^2+z^2是个正数,所以积分不可能是负值。
这个答案有点问题吧