问一个 用定积分定义求 数列和极限的问题

2024年11月19日 22:41
有1个网友回答
网友(1):

其实问题很简单,被大家和楼主复杂化了.

最初人们是遇到了这样一类问题,几何上求取边梯形的面积,物理上求变速度下的位移(速度曲线已知,位移就是线下面积),等等这样一类问题,解决的办法就是分割,近似,求和,取极限,因为很多问题都有这样的共同特征,解决方法也都是这四个步骤,所以给出的一个定义,那就是定积分的定义,把这样一类问题定义为定积分,这类问题的结果就是求得的定积分的结果.根据你的补充来看.

1.你把这个问题的顺序搞反了,虽然我们开始研究的时候是从曲边梯形的面积开始的,最后抽象得到的是一类问题的特征,然后给出定义,你学习的时候应该抛开先面积后定义的做法,应该是先学定义,然后理解几何意义,物理意义等等2.定义本身是一个数学抽象.所说的过程那就是研究这类问题的过程了.就好比你面前有一个苹果一个橙子一个梨,当你在研究他们数量的时候你发现他们都是一个,然后有了数字1的定义,当你研究他们是什么的时候,你有了水果的定义等等吧,定积分的定义是来源于解决曲边梯形面积的分割,近似,求和,取极限这四部过程,在定义中已经含有了.3.定积分是从曲边梯形面积中抽象出来的数学定义,它的几何意义当然就是曲边梯形的面积.4.至于你说你自己找到了.其实不然.虽然给出了定积分定义,但是解决这一类问题的时候不可能用定义来求解.你找的牛顿莱布尼茨公式是求解定积分的方法,同时也是将积分学与微分学联系起来的公式.它给我们提供一种用原函数求解定积分的方法,而不是用定义.楼主还有不懂的可以百度Hi我