设
a=1/2+3/4+7/8+15/16+31/32+63/64+127/128+255/256
b=1/2+1/4+1/8+1/16+ 1/32+ 1/64+ 1/128+ 1/256
那么a+b=8
b+1/256=1/2+1/4+1/8+1/16+ 1/32+ 1/64+ 1/128+ (1/256+1/256)
=1/2+1/4+1/8+1/16+ 1/32+ 1/64+( 1/128+ 1/128)
=1/2+1/4+1/8+1/16+ 1/32+ (1/64+ 1/64)
=……
=1
所以b=1-1/256
a=8-b=8-(1-1/256)
=7+1/256
这个题主要是找规律的:
1/2+3/4+7/8+15/16+31/32+63/64+127/128+255/256
=(1-1/2)+(1-1/4)+(1-1/8)+(1-1/16)+(1-1/32)+(1-1/64)+(1-1/128)+(1-1/256)
=8-(1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256)
=8-(1-1/256)
=7+1/256
规律如下
1/2+3/4+7/8+15/16+31/32+63/64+...+(2*n-1/2*n)
=(1-1/2)+(1-1/4)+(1-1/8)+(1-1/16)+(1-1/32)+(1-1/64)+...+(1-1/2*n)
=n-(1/2+1/4+1/8+1/16+1/32+1/64+...+1/2*n)
=n-[1/2(1-1/2*n)/(1-1/2)]
=n-1+1/2*n
等比数列求和公式:Sn=a1(1-q*n)/(1-q)