十六进制和十七进制 是什么意思

还有什么二进制的 .. 到底是什么来的?
2024年11月22日 21:06
有5个网友回答
网友(1):

16进制是计算机中数据的一种表示方法.同我们日常中的十进制表示法不一样.它由0-9,A-F,组成.与10进制的对应关系是:0-9对应0-9;A-F对应10-15;N进制的数可以用0---(N-1)的数表示超过9的用字母A-F例如:10进制的32表示成16进制就是:2016进制的32表示成10进制就是:3×16^1+2×16^0=50其他进制的你可以看这里: http://baike.baidu.com/view/230306.htm

网友(2):

数制是人们利用符号进行计数的科学方法。数制有很多种,在计算机中常用的数制有:十进制,二进制和十六进制。 数制也称计数制,是指用一组固定的符号和统一的规则来表示数值的方法。计算机是信息处理的工具,任何信息必须转换成二进制形式数据后才能由计算机进行处理,存储和传输。下面是2,8,10,16进制的祥解. http://baike.baidu.com/view/15954.html?wtp=tt

网友(3):

这个怎么说呢
电脑上的进制
比如平常从1数到10就是10
二进制从1数到2就是10
十六进制从1数到16才算是10
十七进制从1数到17才算是10
以此类推

网友(4):

就是满16进1或者满17进1

网友(5):

18世纪德国数理哲学大师莱布尼兹从他的传教士朋友鲍威特寄给他的拉丁文译本《易经》中,读到了八卦的组成结构,惊奇地发现其基本素数(0)(1),即《易经》的阴爻- -和__阳爻,其进位制就是二进制,并认为这是世界上数学进制中最先进的。
20世纪被称作第三次科技革命的重要标志之一的计算机的发明与应用,其运算模式正是二进制。它不但证明了莱布尼兹的原理是正确的,同时也证明了《易经》数理学是很了不起的。

二进制是指一、二进制数的表示法
二进制是计算技术中广泛采用的一种数制。二进制数是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”。二进制数也是采用位置计数法,其位权是以2为底的幂。例如二进制数110.11,其权的大小顺序为2^2、2^1、2^0、2^-1、2^-2。对于有n位整数,m位小数的二进制数用加权系数展开式表示,可写为:
(a(n-1)a(n-2)…a(-m))2=a(n-1)×2^(n-1)+a(n-2)×2^(n-2)+……+a(1)×2^1+a(0)×2^0+a(-1)×2^(-1)+a(-2)×2^(-2)+……+a(-m)×2^(-m)
二进制数一般可写为:(a(n-1)a(n-2)…a(1)a(0).a(-1)a(-2)…a(-m))2。

注意:
1.式中aj表示第j位的系数,它为0和1中的某一个数。
2.a(n-1)中的(n-1)为下标,输入法无法打出所以用括号括住,避免混淆。
3.2^2表示2的平方,以此类推。

【例1102】将二进制数111.01写成加权系数的形式。
解:(111.01)2=(1×2^2)+(1×2^1)+(1×2^0)+(0×2^-1)+(1×2^-2)

二、二进制数的加法和乘法运算

  二进制数的算术运算的基本规律和十进制数的运算十分相似。最常用的是加法运算和乘法运算。

  1. 二进制加法

有四种情况: 0+0=0
0+1=1
1+0=1
1+1=0 进位为1

【例1103】求 (1101)2+(1011)2 的和
解: 1 1 0 1
+ 1 0 1 1
1 1 0 0

2. 二进制乘法

有四种情况: 0×0=0
1×0=0
0×1=0
1×1=1

【例1104】求 (1110)2 乘(101)2 之积

解: 1 1 1 0

× 1 0 1

1 1 1 0

0 0 0 0

+ 1 1 1 0

1 0 0 0 1 1 0
 在德国图灵根著名的郭塔王宫图书馆(Schlossbiliothke zu Gotha)保存着一份弥足珍贵的手稿,其标题为:
  “1与0,一切数字的神奇渊源。这是造物的秘密美妙的典范,因为,一切无非都来自上帝。”
  这是德国天才大师莱布尼茨(Gottfried Wilhelm Leibniz,1646 - 1716)的手迹。但是,关于这个神奇美妙的数字系统,莱布尼茨只有几页异常精炼的描述。用现代人熟悉的话,我们可以对二进制作如下的解释:
2^0 = 1
2^1 = 2
2^2 = 4
2^3 = 8
2^4 = 16
2^5 = 32
2^6 = 64
2^7 = 128
以此类推。
  把等号右边的数字相加,就可以获得任意一个自然数。我们只需要说明:采用了2的几次方,而舍掉了2几次方。二进制的表述序列都从右边开始,第一位是2的0次方,第二位是2的1次方,第三位时2的2次方……,以此类推。一切采用2的成方的位置,我们就用“1”来标志,一切舍掉2的成方的位置,我们就用“0”来标志。这样,我们就得到了下边这个序列:
 
1 1 1 0 0 1 0 1

2的7次方
2的6次方
2的5次方
0
0
2的2次方
0
2的0次方
   
128
+
64
+
32
+
0
+
0
+
4
+
0
+
1
=
229

  在这个例子中,十进制的数字“229”就可以表述为二进制的“11100101”。任何一个二进制数字最左边的一位都是“1”。通过这个方法,用1到9和0这十个数字表述的整个自然数列都可用0和1两个数字来代替。0与1这两个数字很容易被电子化:有电流就是1;没有电流就是0。这就整个现代计算机技术的根本秘密所在。