连接CE,
∵E为AC中点,∴SΔBCE=1/2SΔABC,SΔCEF=SΔAEF,
∵BC=2DC,∴,SΔACD=1/3SΔABC,SΔCDF=1/2SΔBDF,
设SΔCEF=SΔAEF=X,SΔCDF=Y,SΔABC=S,
则2X+Y=1/3S,
X+3Y=1/2SΔ,
X=1/10,Y=2/15S,
∴S四边形CEFD=X+Y=7/30S,
SΔBDF=2Y=4/15S,
∴SΔBDF:S四边形CEFD=4/15:7/30=8:7。
如图: