求多道数学练习题及答案。

2024-10-31 21:27:21
有3个网友回答
网友(1):

相遇问题
年级 班 姓名 得分
一、填空题
1.某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒.问:该列车与另一列长320米、时速64.8千米的列车错车而过需要______秒?
2.甲、乙二人骑车同时从环形公路的某点出发,背向而行,已知甲骑一圈需48分钟,出发后30分钟两人相遇.问:乙骑一圈需______分钟.
3.甲、乙二人从相距36千米的两地相向而行.若甲先出发2小时,则在乙动身2.5小时后两人相遇;若乙先出发2小时,则甲动身3小时后两人相遇.甲每小时走______千米.乙每小时走_______千米.
4.两列火车相向而行,甲车每小时行48千米,乙车每小时行60千米,两车错车时,甲车上一乘客从乙车车头经过他的车窗时开始计时,到车尾经过他的车窗共用13秒钟,求乙车全长_______米.
5.李华从学校出发,以每小时4千米的速度步行到20.4千米外的冬令营报到.半小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米.又过了1.5小时,张明从学校骑车去营地报到,结果三人在途中某地相遇.问骑车人每小时行________千米.
6.甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车的速度分别为每小时60千米和48千米.有一辆迎面开来的卡车分别在他们出发后6小时、7小时、8小时先后与甲、乙、丙三辆车相遇.求丙车的速度是_______千米/小时.
7.已知甲、乙两车站相距470千米,一列火车于中午1时从甲站出发,每小时行52千米,另一列火车于下午2时30分从乙站开出,下午6时两车相遇.问:从乙站开出的火车的速度是_______千米/小时.
8.一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是______秒?
9.操场正中央有一旗竿,小明开始站在旗竿正东离旗竿10米远的地方.然后向正北走了10米,再左转弯向正西走了20米,再左转弯向正南走了30米,再左转弯向正东走了40米,再左转弯向正北走了20米.这时小明离旗竿______米.
10.甲乙两地相距258千米.一辆汽车和一辆拖拉机同时分别从两地相对开出,经过4小时两车相遇.已知汽车的速度是拖拉机速度的2倍.相遇时,汽车比拖拉机多行_______千米.

二、解答题
11.甲、乙二人分别从A、B两地同时出发,在A、B之间往返跑步.甲每秒跑3米,乙每秒跑7米,如果他们第四次迎面相遇点与第五次迎面相遇点之间相距150米,求A、B间相距多少米?
12.如下图,A、C两地相距2千米,CB两地相距5千米.甲、乙两人同时从C地出发,甲向B地走,到达B地后立即返回;乙向A地走, 到达A地后立即返回;如果甲速度是乙速度的1.5倍,那么在乙到达D地时,还未能与甲相遇,他们还相距0.5千米,这时甲距C地多少千米?

13.一只小船从A地到B地往返一次共用2小时.回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米.求A至B两地距离.
14.甲、乙两地之间有一条公路,李明从甲地出发步行往乙地;同时张平从乙地出发骑摩托车往甲地.80分后两人在途中相遇.张平到达甲地后马上折回往乙地,在第一次相遇后又经过20分张平在途中追上李明.张平到达乙地后又马上折回往甲地,这样一直下去,当李明到达乙地时,张平追上李明的次数是多少?

———————————————答 案——————————————————————

一、填空题
1. 15秒
该车速:(250-210)÷ (25-23)=20(米/秒)
车长:25×20-250=250(米)
(64.8千米/小时=18米/秒)
错车时间:(250+320)÷(20+18)=15(秒)

2. 80分钟
(分)

3. 甲:6千米/时;乙:3.6千米/小时.
36×2÷(2+3+2.5)=9.6(千米/小时)
甲速:(36-9.6×2.5)÷2=6(千米/小时)
乙速:(36-9.6×3)÷2=3.6(千米/小时)

4. 390米
甲速:48千米/小时=米/秒
乙速:60千米/小时=米/秒
乙车长:(米)

5. 20千米/小时
(千米/小时)

6. 39千米/小时
卡车速度:(60-48)×6÷(7-6)-48=24(千米/小时)
丙车速度:48-(48+24)÷8=39(千米/小时)

7. 60千米/时
(千米/小时)

8. 8秒
11×280÷385=8(秒)

9. 30米.
10. 86千米.
258÷4×(2-1)÷(2+1)×4=86(千米)

11. 设甲、乙两人第i次迎面相遇点为Ci(i=1,2,3,4,5).由甲、乙速度之比为3:7,令AB=1,则,.如下图:

同理可得:
,故;
,故;
,故;
所以(米).
答:A、B相距250米.

12. 由甲速是乙速的1.5倍的条件,可知甲路程是乙路程的1.5倍.设CD距离为x千米,则乙走的路程是(4+x)千米,甲路程为(4+x)×1.5千米或(5×2- x–0.5)千米.列方程得
(4+ x)×1.5=5×2- x-0.5
x =1.4
这时甲距C地:1.4+0.5=1.9(千米).

13. 顺水速度:逆水速度=5:3
由于两者速度差是8千米.立即可得出
逆水速度(千米/小时).
A至B距离是12+3=15(千米)
答:A至B两地距离是15千米.

14. 画线段图如下:

设从第一次相遇后到张平第一次追上李明时李明走了x千米,则相同时间内张平走了: x(80÷20)×2+ x=9 x(千米),即在相同时间内,张平速度是李明速度的:9x÷x=9(倍).这就是说,李明从甲地步行到乙地时,张平骑摩托车行走了9个全程.很明显,其中有5个全程是从乙地到甲地,有4个全程是从甲地到乙地.从甲地到乙地张平每走一个全程,必然追上李明一次.因此,张平共追上李明4次.

小学奥数数列问题练习题及答案
1. 39个连续奇数的和是1989,其中最大的一个奇数是多少?

2. 在1~200这二百个数中能被9整除的数的和是多少?

3. 在1~100这一百个自然数中所有不能被9整除的奇数的和是多少?

4. 若干人围成8圈,一圈套一圈,从外向内各圈人数依次少4人.如果最内圈有32人,共有多少?

5. 有一列数:1,1993,1992,1,1991,1990,1,…,从第三个数起,每一个数都是它前面两个数中大数减小数的差,求从第一个起到1993个数这1993个数之和.

6. 学校进行乒乓球选拔赛,每个参赛选手都要和其他所有选手赛一场,一共进行了78场比赛,有多少人参加了选拔赛?

7. 跳棋棋盘上一共有多少个棋孔?

8. 求193+187+181+…+103的值.

9. 某市举行数学竞赛,比赛前规定,前15名可以获奖,比赛结果第一名1人;第二名并列2人;第三名并列3人;……;第十五名并列15人.用最简便方法计算出得奖的一共有多少人?

10. 全部三位数的和是多少?

11. 在1949,1950,1951,…1997,1998这五十个自然数中,所有偶数之和比所有奇数之和多多少?

12. 某剧院有25排座位,后一排比前一排多两个座位,最后一排有70个座位.这个剧院一共有多少个座位?

13. 小明从一月一日开始写大字,第一天写了4个,以后每天比前一天多写相同数量的大字,结果全月共写589个大字,小明每天比前一天多写几个大字?

14. 九个连续偶数的和比其中最小的数多232,这九个数中最大的数是多少?

———————————————答 案——————————————————————

答 案:
1. 89.
因为39个连续奇数之和为1989,所以中间一个数是这39个数的平均数,1989÷39=51,比51大的另外19个奇数为:53,55,57,…,87,89.或用51+19×2=51+38=89.所以其中最大的一个奇数为89.

2. 2277.
在1~200这二百个数中能被9整除的数构成了一个以9为首项,公差为9的等差数列:9,18,27,36,…,189,198,一共有(198-9)÷9+1=22项.它们的和为:
(9+198)×22÷2
=207×22÷2
=2277.

3.2176.
(1+3+5+…+99)-(9+27+45+63+81+99)
=(1+99)×50÷2-(9+99)×6÷2
=2500-324
=2176.

4.368.
先求最外圈有多少人?
32+(8-1)×4
=32+28
=60(人).
共有人数:
(32+60)×8÷2
=92×8÷2
=368(人).

5.1766241.
仔细观察这一数列,若把1抽出,则正好成为一个等差数列:1993,1992,1991,1990,…;在原数列中三个数一组出现一个1,则1993个数1993÷3=664…1.可分为664组一个1,即665个1,其余是1993到666这664×2=1328个数.
所以前1993个数之和为:
1×665+(666+1993)×1328÷2
=665+2659×1328÷2
=665+1765576
=1766241.

6.13.
个人参加比赛,每个参赛选手都要和其他选手赛一场,则每个选手赛 场, 个人赛 场,但每两个人只赛一场,所以这里有一半是重复的,所以实际应赛:
÷2=78
=156
13×12=156
所以, .

7.121.
六角形棋盘可看作一正一反两个大等边三角形重叠而成,大三角形每边上有13个棋孔,所以一个大三角形共有棋孔(1+2+3+…+13)=(1+13)×13÷2=91个,剩下三个小三角形(见图),共有棋孔:
(1+2+3+4)×3
=10×3
=30(个).
所以,跳棋盘上一共有棋孔91+30=121个.

8. 2368.
原式=(103+193)×16÷2
=296×16÷2
=296×(16÷2)
=296×8
=2368

9. 120.
通过审题可知,各个名次的获奖人数正好组成一等差数列:1,2,3,…,15.因此,根据公式可得:
(1+15)×15÷2
=16×15÷2
=120(人).

10. 494550.
三位数依次为100,101,102,…,998,999,排成一个公差为1,项数是(999-100)+1=900的等差数列.求所有三位数的和,根据公式得:
(100+999)×900÷2
=1099×900÷2
=494550.

11. 25.
(1950+1952+1954+…+1998)-(1949+1951+1953+…+1997)
=(1950+1998)×25÷2-(1949+1997)×25÷2
=(1950+1998-1949-1997)×25÷2
=2×25÷2
=25.

12. 1150.
根据题意可知,这是一个等差数列求和的问题,但要利用公式
必须先知道第一排有多少个座位,即首项.

=70-(25-1)×2
=70-24×2
=70-48
=22(个)
所以一共有座位: (22+70)×25÷2
=92×25÷2
=1150(个).

13. 1.
因为以后每一天比前一天多写相同数量的大字,即每天写的字数组成一个等差数列,首项为4,和为589.又因为是一月份,所以有31天,即项数为31.求公差.根据 求公差,必须先求出 ,所以逆用求和公式 得 ,
即 =589×2÷31-4
=38-4
=34(个).
所以: (34-4)÷(31-1)
=30÷30
=1(个).

14. 36.
已知九个连续偶数的和比其中最小的数多232,也就是另外八个偶数之和是232.相邻两个偶数差为2,根据公式:
根据公式: .
得: =2×232÷8=58
又因为,

所以,
=(58-14)÷2
=22
=22+14=36.

网友(2):

你的题目在哪里!

网友(3):

百度文库上找吧