如何证明1+1=2(用数学原理回答)?

2024年11月13日 08:59
有5个网友回答
网友(1):

好多人问过 到现在为止还没人证出 在现代的精密科学中,特别在数学和数理逻辑中,广泛地运用着公理法。什么叫公理法呢?从某一科学的许多原理中,分出一部分最基本的概念和命题,对这些基本概念不下定义,而这一学科的所有其它概念都必须直接或间接由它们下定义;对这些基本命题(也叫公理)也不给予论证,而这一学科中的所有其它命题却必须直接或间接由它们中推出。这样构成的理论体系就叫公理体系,构成这种公理体系的方法就叫公理法。

1+1=2就是数学当中的公理,在数学中是不需要证明的。又因为1+1=2是一切数学定理的基础,所以它也是无法用数学的方法证明的。

至于“1+1为什么等于2?”作为一个问题,没要求大家必须用数学的方法证明,其实只要说明为什么1+1=2就可以了,可以说这是定义,也可以说这是公理。不过用反证法还是可以证明的:假设1+1不等于2,则数学就是一锅粥,凡是用到数学的地方都是一锅粥,人类社会就乱了套了,所以1+1必须等于2。
好了,闲话说完,言归正传。1+1=2对于人类有非同寻常的意义。
人类认识世界的过程就像一个小孩滚雪球的过程:第一步,小孩先要用双手捧一捧雪,这一捧雪就相当于人类对世界的感性认识。第二步,小孩把手里的雪捏紧,成为一个小雪球,这个小雪球就相当于人类对感性认识进行加工,形成了概念。于是就有了1。第三步,小孩把雪球放在地上,发现雪球可以粘地上的雪,这就相当于人类的理性认识。雪可以粘雪,相当于1+1=2。第四步,小孩把粘了雪的雪球在雪地上滚一下,发现雪球粘雪后越来越大,这就相当于人类认识世界的高级阶段,可以进入良性循环了。相当于2+1=3。1,2,3可以排成一个最简单的数列,但是可以演绎至无穷。
有了1只是有了概念,有了1+1=2才有了数学,有了2+1=3才开始了数学的无穷变化。
在数学的规范里,1+1=2;
这早就清清楚楚的写在数学领域的入口处.这是数学法则.

但近年来常有人提出1+1=?的问题.这的确与陈景润的陈氏定理的发现有一丝关联.
为此,我在此作一个简单的介绍:

德国数学家哥德巴赫(C.Goldbach,1690-1764)于1742年6月7日在给大数学家欧拉的信中提出,是不是所有的大于2的偶数,都可以表示为两个素数的和?同年6月30日,欧拉在回信中认为这个猜想可能是真的,但他无法证明。
正因为如此,这个命题,称之为哥德巴赫猜想。

现在,哥德巴赫猜想的一般提法是:每个大于等于6的偶数,都可表示为两个奇素数之和;每个大于等于9的奇数,都可表示为三个奇素数之和。其实,后一个命题就是前一个命题的推论。

  哥德巴赫猜想貌似简单,要证明它却着实不易,成为数学中一个著名的难题。18、19世纪,所有的数论专家对这个猜想的证明都没有作出实质性的推进,直到20世纪才有所突破。1937年苏联数学家维诺格拉多夫(и.M.Bиногралов,1891-1983),用他创造的"三角和"方法,证明了"任何大奇数都可表示为三个素数之和"。不过,维诺格拉多夫的所谓大奇数要求大得出奇,与哥德巴赫猜想的要求仍相距甚远。
  直接证明哥德巴赫猜想不行,人们采取了迂回战术,就是先考虑把偶数表为两数之和,而每一个数又是若干素数之积。如果把命题"每一个大偶数可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b",那么哥氏猜想就是要证明"1+1"成立。从20世纪20年代起,外国和中国的一些数学家先后证明了"9+9""2+3""1+5""l+4"等命题。
  1966年,我国年轻的数学家陈景润,在经过多年潜心研究之后,成功地证明了"1+2",也就是"任何一个大偶数都可以表示成一个素数与另一个素因子不超过2个的数之和"。这是迄今为止,这一研究领域最佳的成果,距摘取这颗"数学王冠上的明珠"仅一步之遥,在世界数学界引起了轰动。"1+2"也被誉为陈氏定理。
在数学界叙述陈氏定理是采用如下形式:
N=p+P2;
N---大偶数;
p---素数;
P2--至多具有两个素因子的殆素数;
所以,1+N仅是数学界用的一个并不达意的简化符号.不理解的最好不用.

从此以后,有一些人,一知半解的赶时髦,到处夸夸其谈,故弄玄虚的提出1+1=?的新闻.就象现在有的买假货的专家,连纳米是什么单位都搞不清,却在大肆吹嘘他的纳米产品.这严重影响了一大批数学概念尚未牢固的年轻人.使他们对基本的数学法则提出疑问.这必然会影响他们自身的数学素质的提高.
牢牢的记住1+1=2.在任何时候都不要有丝毫的怀疑.如果连这一点都做不到,就不用学什么数学了.

网友(2):

证明: 1+1=2 数学科洪士薰老师

1. 先了解peano 公设:所谓自然数,就是满足下列条件,

1.一集合N 中,有元素n,及后续元素n+,n+与n 对应.

2.元素e 必定属于N 中.

3.元素e 在N 中不为任一元素的后续元素.

4.N 中的元素,a+=b+则a=b.(元素唯一)

5.(归纳公设)S 为N 的子集,e 属于S,n 属于S,n+也属于S.那么S=N.

N 就是我们说的自然数集合.

其中我们规定e:=1, e+:=2, (e+)+:=3,.....以此类推.

2. 再来定义加法,

加法(+)为一函数,这函数满足两个条件

1.(+)(n,e)=n+ 写成大家熟悉的式子1.n(+)e=n+

2.(+)(n,m+)=((+)(n,m))+ 2.n(+)m+=(n(+)m)+

满足上面条件的函数(+),我们称为加法+.(+):=+

满足这两条件的函数是可以证明存在且唯一:证明如下

因为(+)(e,e)=e+

e(+)e=e+

所以1+1=2 得证.

存在:

e, e+ ,(e+)+,…… 即所有自然数

唯一:

n N " Î ,

+(n,e)=n+

+(n,e+)=(+(n,e))+

+(n,e+)+)=………

故(+)存在且唯一

上述证明翻成白话文如下:

自然数系依加法运算分别是:1,1+,(1+)+,……。而这些1+,(1+)+,…就用符号2,3,…

表示,所以1 + 1指的是1後面那一个数字,也就是1+,自然就是2。

为什麼会有Peano 公设,及定义加法,这起源於十九世纪末,二十世纪初,Hibert,Brouwer,

因物理上狭义相对论,及量子论推翻了物理旧基础,而数学家们因此想证明,数学是有坚固基础,

是不变的真理。所以希望能从逻辑上建立一个完整、严密的基础,於是第一个当然针对自然数系开

始,希望能像欧氏几何一样,从基本公设,经由逻辑就可以得到完整的自然数系性质,所以归结出

Peano 五个公设(其实後人把它进一步归结成三个),而罗素与他的老师怀海德合写<<数学原理>>

三大卷,就是做了一部份工作。Hilbert 拟了一连串计画要把数学的基础转化成逻辑,这样一来,

数学家就可以宣称「数学是真理」。不幸的是,1929年Godel 23岁时证明了一个定理:

不完全性定理:

如果有一个系统包含算术,而且这一系统的基本假设并不会互相矛盾,那麼这个系统中

一定存在一个命题,这一个命题的肯定或否定都无法证明。

所以数学并不只是逻辑。当然「1 + 1 = 2」的证明是否很有意义,可以从Godel的定理来看看。

不管如何,亚里斯多德说:「知识始於惊奇」,

网友(3):

恩。比如LZ问这个问题,有一个人回答,这叫做“1”,然后LZ很高兴因为又有一个人回答了,这叫做“1+1”,那么现在有几个人了呢?这是1个一,这又是1个一,当然是2啦。

网友(4):

1+1等于几?所有人都会脱口而出说是2;但是在科学的世界里,还真的存在1+1小于2的情况呢;今天爆爆就用一个科学实验,教你证明1+1不等于2。

网友(5):

能证明的人都是拿了诺贝尔数学奖的人。问题主开设诺贝尔奖了吗