(2014?松江区二模)如图,在正方形ABCD中,E是边CD上一点,AF⊥AE交CB的延长线于点F,联结DF,分别交AE

2024年11月25日 08:37
有1个网友回答
网友(1):

证明:(1)∵四边形ABCD是正方形,
∴∠ADE=∠ABC=∠DAB=90°,AD=AB,AD∥BC,AB∥CD,
∵AF⊥AE,
∴∠EAF=90°,
∴∠DAE=∠BAF,
在△ADE和△ABF中,

∠DAE=∠BAF
AD=AB
∠ADE=∠ABF=90°

∴△ADE≌△ABF(ASA),
∴AF=AE;
(2)∵AF⊥AE,
∴∠1+∠2=90°,
∵∠2+∠3=90°,
∴∠1=∠3,
∵AD∥FC,
∴∠4=∠5,
∵∠1=∠5,
∴∠1=∠3=∠4=∠5,
在△ADE和△DAP中,
∠3=∠4
AD=AD
∠ADE=∠DAP

∴△ADE≌△DAP(ASA),
∴AP=DE,
又∵AP∥DE,
∴四边形APED是平行四边形,
∵∠PAD=90°,
∴平行四边形APED是矩形.