设an=(1⼀3)n次方,设数列Cn=【na(n+1)-(n+1)an-1】⼀(1+an)(1+a(n+1)),

2024年11月27日 17:42
有2个网友回答
网友(1):

解:
cn=[na(n+1)-(n+1)an -1]/[(1+an)[1+a(n+1)]]
=n/(1+an)-(n+1)/[1+a(n+1)]
Tn=c1+c2+...+cn
=1/(1+a1)-2/(1+a2)+2/(1+a2)-3/(1+a3)+...+n/(1+an)- (n+1)/[1+a(n+1)]
=1/(1+a1) -(n+1)/[1+a(n+1)]
=1/(1+1/3)-(n+1)/[1+(1/3)^(n+1)]
=3/4 -(n+1)/[1+(1/3)^(n+1)]
n为正整数,随n增大,分子n+1单调递增,分母1+(1/3)^(n+1)单调递减,(n+1)/[1+(1/3)^(n+1)]单调递增,3/4 -(n+1)/[1+(1/3)^(n+1)]单调递减。要使Tn3/4 -(1+1)/[1+(1/3)²]=3/4-9/5=-21/20<-1,因此只要n≥-1
即存在最小的整数-1,使得对于任意正整数n,不等式Tn

网友(2):

(n+1)an-1中,an-1是a(n-1)吗?