∫(-π/2~π/2)[cosx-2cosx(sinx)^2 ]dx=∫(-π/2~π/2)coxdx-∫(-π/2~π/2)2cosx(sinx)^2dx=sinx(-π/2~π/2)-2∫(-π/2~π/2)(sinx)^2dsinx=2-2/3[(sinx)^3](-π/2~π/2)=2-4/3=2/3
=cosx(1-2(sinx)^2)dx=1-2(sinx)^2dsinx=sinx-2/3(sinx)^3=2/3
2/3