(1)an^2 -[ a(n-1)]^2 =p
(2)因为数列{an}是等差数列,设公差为d,则有 an - a(n-1) =d ,(an+a(n-1))(an - a(n-1))=P,得
an + a(n-1) =p/d 将1式与3式联立,得数列通项 an = (1/2 )d + (p/2d) ,因为p,d均为常数,所以数列{an}为常数列
1
an²-a(n-1)²=p
2
令公方差为d,公差为d'
an²-a(n-1)²=d
an-a(n-1)=d'
d≠0时
an+a(n-1)=d/d'
an=(d'²+d)/2d'为常数
数列{an}为常数列
d=0
an=an-1,d'=0
数列{an}为常数列