Sn=1/(1*4)+1/(2*5)+1/(3*6)+1/(4*7)+...+1/(n-3)n+1/(n-2)(n+1)+1/(n-1)(n+2)+1/n(n+3)
=1/3*[3/(1*4)+3/(2*5)+3/(3*6)+3/(4*7)+...+3/(n-3)n+3/(n-2)(n+1)+3/(n-1)(n+2)+3/n(n+3)]
=1/3*[1-1/4+1/2-1/5+1/3-1/6+1/4-1/7...+1/(n-3)-1/n+1/(n-2)-1/(n+1)+1/(n-1)-1/(n+2)+1/n-1/(n+3)]
=1/3*[1+1/2+1/3-1/(n+1)-1/(n+2)-1/(n+3)]
=1/3*[11/6-1/(n+1)-1/(n+2)-1/(n+3)]
继续求出最简即可。
希望对你有所帮助
如有问题,可以追问。
谢谢采纳
1/n(n+3)=[1/n-1/(n+3)]/3
其和为1-1/4+1/2-1/5+1/3-1/6+1/4-1/7+...+1/(n-3)-1/n+1/(n-2)-1/(n+1)+1/(n-1)-1/(n+2)+1/n-1/(n+3)
从第四组1/4-1/7开始,能被消去,
结果为[1+1/2+1/3-1/(n+1)-1/(n+2)-1/(n+3)]/3
详细步骤不好在上面写,给你提供个思路
把上面1/n(n+3)拆分成两个数字相差
即分解成三分之一倍的n分之一减去n加三分之一,,
然后分别相加,,,很简单的