求解不定积分∫e^x *(2x+1)⼀2√x dx的详细步骤

2024-11-01 08:35:22
有2个网友回答
网友(1):

求解不定积分∫(e^x )(2x+1)/(2√x) dx的详细步骤

解:令√x=u,则x=u²,dx=2udu;代入原式得:
原式=∫[e^(u²)](2u²+1)du=2∫u²e^(u²)du+∫e^(u²)du
=∫ud[e^(u²)]+ue^(u²)-∫ud[e^(u²)]=ue^(u²)+C=(√x)e^x+C

网友(2):

∫ e^x • (2x + 1)/(2√x) dx
= ∫ e^x • 2x/(2√x) dx + ∫ e^x • 1/(2√x) dx
= ∫ e^x • x/√x dx + ∫ e^x d(√x)、∵(√x)' = 1/(2√x)
= ∫ √xe^x dx + √xe^x - ∫ √x d(e^x)、分部积分法
= ∫ √xe^x dx + √xe^x - ∫ √xe^x dx、前后一项抵消
= √xe^x + C