(Ⅰ)∵数列{an}的前n项和为Sn,
且Sn=n(n+1)(n∈N*),
∴a1=S1=1×(1+1)=2,
an=Sn-Sn-1=n(n+1)-(n-1)n
=(n2+n)-(n2-n)
=2n.
(Ⅱ)∵an=2n,∴bn=
=1
an?an+1
=1 2n?2(n+1)
(1 4
?1 n
),1 n+1
∴Tn=
(1?1 4
+1 2
?1 2
+…+1 3
?1 n
)1 n+1
=
(1?1 4
)1 n+1
=
.n 4n+4