f(x) = (x + a)^3
f(1 + x)
= (1 + x + a)^3
= [(1 + a) + x]^3
= [y + x]^3 ....................y = 1 + a
= y^3 + 3*y^2*x + 3*y*x^2 + x^3
f(1 - x)
= (1 - x + a)^3
= [(1 + a) - x]^3
= y^3 - 3*y^2*x + 3*y*x^2 - x^3
所以:y^3 + 3*y*x^2 ≡ 0
所以:y = 0,a = -1
f(2) + f(-2) = 1^3 + (-3)^3 = 1 - 27 = -26
可令X=a, 则f(1+a)=-f(1-a)
即(1+a+a)^3=-(1-a+a)^3=-1
推出(1+2a)^3=-1
所以a=-1
再把2和-2代入函数方程
得(2-1)^3+(-2-1)^3=-26
所以选C
(注x^3-----x的三次方)
选A