已知π/4<β<α<3π/4
所以0<α-β<π/2
π/2<α+β<3π/2
cos(α-β)=12/13,sin(α+β)=-3/5
所以sin(α-β)=√[1-(12/13)²]=5/13
cos(α+β)=-√[1-(-3/4)²]=-4/5
所以sin2α=sin[(α-β)+(α+β)]
=sin(α-β)cos(α+β)+cos(α-β)sin(α+β)
=(5/13)*(-4/5)+(12/13)*(-3/5)=-56/65
sin2α=sin[(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β)
由π/4<β<α<3π/4,得0<α-β<π/2,π/2<α+β<3π/2
所以,sin(α-β)=5/13,cos(α+β)=-4/5
故sin2α=-56/65