曲线y=f(x)在点(2,f(2))处的切线方程式为y=3,说明函数过(2,3)点,且在该点的导数为0f'(x)=a-1/(x+b)^2f'(2)=a-1/(2+b)^2=0f(2)=a2+1/(2+b)=3a.b∈z解得a=1b=-1f(x)=x+1/(x-1)
f'(x)=a-1/(x+b)^2 f'(2)=a-1/(b+2)^2=0a*(b+2)^2=1 f(2)=32*a+1/(b+2)=3 2/(b+2)^2+1/(b+2)-3=0b=-1,or b=-8/3