f(x)=a/x+b/(1-x)-a-b+a+b=a(1-x)/x+bx/(1-x)+(a+b)因为 0即 x/(1-x) 和 (1-x)/x 都 >0而 a、b也是正常数,所以根据基本不等式有:a(1-x)/x+bx/(1-x)>=2√(a(1-x)/x*bx/(1-x))=2√(ab)即 f(x)>=2√ab+a+b这时 a(1-x)/x=bx/(1-x)解得 x=√a/(√a+√b)f(x)的最小值是 2√ab+a+b