时间序列模型
间序列分析
在生产和科学研究中,对某一个或一组变量x(t)进行观察测量,将在一系列时刻t1, t2, …, tn (t为自变量且t1
时间序列建模基本步骤是:①用观测、调查、统计、抽样等方法取得被观测系统时间序列动态数据。 ②根据动态数据作相关图,进行相关分析,求自相关函数。相关图能显示出变化的趋势和周期,并能发现跳点和拐点。跳点是指与其他数据不一致的观测值。如果跳点是正确的观测值,在建模时应考虑进去,如果是反常现象,则应把跳点调整到期望值。拐点则是指时间序列从上升趋势突然变为下降趋势的点。如果存在拐点,则在建模时必须用不同的模型去分段拟合该时间序列,例如采用门限回归模型。③辨识合适的随机模型,进行曲线拟合,即用通用随机模型去拟合时间序列的观测数据。对于短的或简单的时间序列,可用趋势模型和季节模型加上误差来进行拟合。对于平稳时间序列,可用通用ARMA模型(自回归滑动平均模型)及其特殊情况的自回归模型、滑动平均模型或组合-ARMA模型等来进行拟合。当观测值多于50个时一般都采用ARMA模型。对于非平稳时间序列则要先将观测到的时间序列进行差分运算,化为平稳时间序列,再用适当模型去拟合这个差分序列。
时间序列分析主要用于:①系统描述。根据对系统进行观测得到的时间序列数据,用曲线拟合方法对系统进行客观的描述。②系统分析。当观测值取自两个以上变量时,可用一个时间序列中的变化去说明另一个时间序列中的变化,从而深入了解给定时间序列产生的机理。③预测未来。一般用ARMA模型拟合时间序列,预测该时间序列未来值。④决策和控制。根据时间序列模型可调整输入变量使系统发展过程保持在目标值上,即预测到过程要偏离目标时便可进行必要的控制。
DPS数据处理系统提供给用户一套较完整的时间序列建模分析、进行预测预报的工具,包括平稳无趋势时间序列分析预测、有趋势的时间序列预测、具季节性周期的时间序列预测以及差分自回归滑动平均(ARIMA)建模分析、预测等时间序列分析和建模技术。