把sinx换作cosxtanx,所有的cosx提到分子,所以原式=∫(secx)^4dx/(tanx)^3
=∫(secx)^2dtanx/(tanx)^3
=∫ [1+(tanx)^2] /(tanx)^3 dtanx
=∫ [1/(tanx)^3+1/tanx] dtanx
=-2/(tanx)^2+ln|tanx|+C
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
9、∫ tanx dx = - ln|cosx| + C = ln|secx| + C
10、∫ secx dx =ln|cot(x/2)| + C = (1/2)ln|(1 + sinx)/(1 - sinx)| + C = - ln|secx - tanx| + C = ln|secx + tanx| + C
求不定积分∫dx/(sin³xcosx)
解:原式=∫(sin²x+cos²)dx/(sin³xcosx)=∫dx/(sinxcosx)+∫cosxdx/sin³x
=∫d(2x)/sin(2x)+∫d(sinx)/sin³x=ln∣tanx∣-1/(2sin²x)+C
把sinx换作cosxtanx,所有的cosx提到分子,所以原式=∫(secx)^4dx/(tanx)^3
=∫(secx)^2dtanx/(tanx)^3
=∫ [1+(tanx)^2] /(tanx)^3 dtanx
=∫ [1/(tanx)^3+1/tanx] dtanx
=-2/(tanx)^2+ln|tanx|+C
∫dx/(sin³xcosx﹚
=∫cosxdx/(sin³xcos²x﹚
=∫dsinx/[sin³x(1-sin²x﹚]
令sinx=t,则原积分=
=∫dt/[t³(1-t²﹚]
=∫(t³+t(1-t²﹚+(1-t)]dt/[t³(1-t²﹚]
=∫dt/(1-t²﹚+∫dt/(t²)+∫dt/[t³(1+t)]
=∫dt/(1-t²﹚+∫dt/(t²)+∫[1/(t³)-1/(t²)+1/t-1/(1+t)]dt
=1/2[∫dt/(1-t﹚+∫dt/(1+t﹚]+∫[1/(t³)+1/t-1/(1+t)]dt
=﹣1/2·ln(1-sinx)-1/2·ln(1+sinx)-1/(2sin²x﹚+ln|sinx|+C
=∫sec²x/tanxsin²xdx=∫﹙1+tanx﹚²/tan³xdx
令t=tanx 原式=∫﹙1+t²﹚/t³dx=ln|t|-1/2t²+C=ln|tanx|-1/2tan²x+C