y=xarcsin根号下x⼀(1+x)+arctan根号下x-根号2-根号x求导

2024年11月20日 18:41
有1个网友回答
网友(1):

y=xarcsin√[x/(1+x)]+arctan√(x-√2)-√x,求导
解:dy/dx=arcsin√[x/(1+x)]+x{√[x/(1+x)]}′/√[1-x/(1+x)]+[√(x-√2)]′/(1+x-√2)-1/(2√x)
=arcsin√[x/(1+x)]+{x[x/(1+x)]′/2√[x/(1+x)]}/√[1/(1+x)]+{1/[2√(x-√2)]}/(x+1-√2)-1/(2√x)
=arcsin√[x/(1+x)]+{x[1/(1+x)²]/2√[x/(1+x)]}/√[1/(1+x)]+1/[2(x+1-√2)√(x-√2)]-1/(2√x)
=arcsin√[x/(1+x)]+(√x)/[2(1+x)]+1/[2(x+1-√2)√(x-√2)]-1/(2√x)