(1-2⼀x+1)的x次方,x趋向无穷求极限

2024年11月19日 07:24
有2个网友回答
网友(1):

lim[x→∞] (1 - 2/(x+1))^x
=lim[x→∞] [(1 - 2/(x+1))^(-(x+1)/2)]^(-2x/(x+1))
中括号内为第二个重要极限,结果是e,外面的指数极限是-2
=1/e²

希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢。

网友(2):

答案为:1/(e^2)
过程为:(1-2/x+1)^x={(1-2/x+1)^[-(1+x)/2]}^[-2x/(1+x)]=e^-2=1/(e^2)