每个人报一次加起来应该是50,那么比50多的人就是报两次的人数28+23+20-50=21
假设28人包语文,同时有20人报英语,8人报数学,还有22人没报
21
要使参加双科的人数尽量多,就要使参加单科的人数尽量少,但参加单科的人数不为零,故可列式求解
设:参加语文和数学的人为x,语文和英语的人y,数学和英语的人z,只参加语文的为a,只参加数学的为b,只参加英语的为c,不参加的为q(用不到q)
a+y+z=28
b+x+z=23
c+x+y=20
三式相加得:a+b+c+2(x+y+z)=71
即:a+b+c=71-2(x+y+z)
又因为a+b+c大于等于0
所以71-2(x+y+z)大于等于0
解得x+y+z的最大值为35(x,y,z为整数)
答:参加两科竞赛的最多有35人。
参加竞赛的科目是同时进行吗?