请给我讲讲切割线定理,割线定理,相交弦定理,好的追50

还是不太懂,能用图吗
2024年11月23日 08:35
有2个网友回答
网友(1):

割线定理:从圆外一点P引两条割线与圆分别交于A.B.C.D 则有 PA·PB=PC·PD,当PA=PB,即直线AB重合,即PA切线是得到切线定理PA^2=PC*PD
要证PT2=PA·PB, 可以证明 ,为此可证以 PA·PT为边的三角形与以PT,BP为边的三角形相似,于是考虑作辅助线TP,PB。容易证明∠PTA=∠B又∠P=∠P,因此△BPT∽△TPA,于是问题可证.

切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

几何语言:∵PT切⊙O于点T,PBA是⊙O的割线

∴PT^2=PA·PB(切割线定理)

推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

几何语言:∵PBA,PDC是⊙O的割线

∴PD·PC=PA·PB(切割线定理推论)(割线定理)

由上可知:PT^2=PA·PB=PC·PD

相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等

几何语言:∵弦AB、CD交于点P

∴PA·PB=PC·PD(相交弦定理)

推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

几何语言:∵AB是直径,CD⊥AB于点P

∴PC2=PA·PB(相交弦定理推论)

网友(2):

http://bk.baidu.com/view/357878.htm
http://bk.baidu.com/view/639186.htm(这图在第一个网址上)
http://bk.baidu.com/view/357874.htm