函数f(x)=x3+ax2+bx+c在x=2/3与x=1时都取得极值
f'(x)=3x²+2ax+b
所以方程3x²+2ax+b=0的两根为2/3,1
2/3+1=-2a/3,a=-5/2
2/3=b/3,b=2
f'(x)<0,2/3
所以
函数f(x)的单调增区间为(-∞,2/3),(1,+∞)
单调减区间为(2/3,1)
(2)
由(1)得:f(x)=x³-5/2*x²+2x+c
若对x属于[-1,2]不等式f(x)
由(1)知函数g(x)在区间[-1,2/3)单增,在区间(2/3,1)单减,(1,2]单增
g(2/3)=8/27-5/2*4/9+2*2/3=14/27
g(2)=2
所以g(x)=x³-5/2*x²+2x,x∈[-1,2]的最大值为2
欲使x³-5/2*x²+2x
(1)导函数f'(x)=3x²+2ax+b,
由已知,f'(2/3)=f'(1)=0,代入上式得4/3+4a/3+b=0
3+2a+b=0
解得a=-5/2,b=2
∴f'(x)=3x²-5x+2,令f'(x)>0得x<2/3或x>1,令f'(x)<0,得2/3<x<1
∴f(x)增区间为(-∞,2/3)和(1,+∞),减区间(2/3,1)
(2) 由(1)得:f(x)=x³-5/2*x²+2x+c
若对x属于[-1,2]不等式f(x)
由(1)知函数g(x)在区间[-1,2/3)单增,在区间(2/3,1)单减,(1,2]单增
g(2/3)=8/27-5/2*4/9+2*2/3=14/27
g(2)=2
所以g(x)=x³-5/2*x²+2x,x∈[-1,2]的最大值为2
欲使x³-5/2*x²+2x
(1)f(x)导完:f'(x)=3X^2=2ax
联立:f'(-2/3)=4/3-4/3a+b=0
f'(1)=3+2a+b=0
解得:a=-1/2 b=-2
(2)依题:f(x)=x^3+ax^2+bx+c<2c
移项:x^3+ax^2+bx
(1) f ' [2/3]=0,f ' [1]=0联立可求解a=-5/2,b=2;f'(x)=2 - 5 x + 3 x^2
x>=1||x<=2/3时,f'[x]>=0,单调增
2/3
因此,c^2-c>不等式右侧表达式最大值
即c^2-c>2
所以c<-1||c>2