若a>0,b>0,且 1 2a+b + 1 b+1 =1 ,则a+2b的最小值为______

若a>0,b>0,且 1 2a+b + 1 b+1 =1 ,则a+2b的最小值为______.
2024年11月23日 03:18
有1个网友回答
网友(1):

∵a>0,b>0,且
1
2a+b
+
1
b+1
=1

∴a+2b=
(2a+b)+3(b+1)
2
-
3
2
=
(2a+b)+3(b+1)
2
?(
1
2a+b
+
1
b+1
)
-
3
2

=
1
2
[1+3+
3(b+1)
2a+b
+
2a+b
b+1
]
-
3
2

1
2
(4+2
3(b+1)
2a+b
?
2a+b
b+1
)
-
3
2
=
4+2
3
2
-
3
2
=
2
3
+1
2

当且仅穗返洞碰当
3(b+1)
2a+b
=
2a+b
b+1
,a>0,b>0,且
1
2a+b
+
1
b+1
=1
,即 b=
3
3
,a=
1
2
+
3
3
时取等号.
∴a+2b的最小值猜颤饥为
2
3
+1
2

故答案为
2
3
+1
2