高等数学求极限,我这一步的写法为什么不对?

2024年11月16日 03:34
有4个网友回答
网友(1):

这样写本来就是错的。把x代进去就要把0代进每一个x。这道题不知道f(x)是什么,是有界函数还是无穷小量,算不出。
极限的求解方法有:(1) x趋向什么就把什么代进去,如果是分式结构,分母不能为0。
(2) 采用等价无穷小代换。当x→0时,有下列常见等价无穷下:sinx~x arcsinx~x tanx~x arctanx~x e^x-1~x ln(1+x)~x 1-cosx~1/2*x^2 n√(1+x)-1~1/n*x
(3) 0/0型用分母有理化或等价无穷小代换。∞/∞型用抓大头法,就是除以最大的x^n
(4) 记住两个重要的极限公式:⑴lim x→0 sinx/x=1;⑵lim x→0 (1+x)^(1/x)=e或lim x→∞ (1+1/x)^x=e (这两条公式要灵活运用,第一条与等价无穷小差不多,第二条只要指数与括号里1+的数成倒数,公式就成立)
(5) 极限与求导、微积分结合的公式的解题法大多采用求导、微积分的解题方法。

网友(2):

lim x->0 [f(x)(1+sinx) /x] =lim x->0 [f(x)/x+f(x)sinx/x]
此时后面的部分就可以用相等价约去变成
lim x->0 [f(x)(1+sinx) /x] =lim x->0 [f(x)/x+f(x)]
这里不应该代入数值
有的题目确实应该代入,就要根据实际情况判断了,我自己总结了点经验,可以和你分享下
1,代入后分子或者分母不为0
2,如果出现0要尽量消去为0的因子,然后再代入
3,一般情况下,要用到等价无穷小
所以哥们要熟记等价无穷小的用法哦,楼上已有兄弟列出了我就不再重复了,好好学习啊!

网友(3):

乘积的时候可以带入,加减不可以直接带入。能带入实际上是用了极限的四则运算法则。

网友(4):

你错在没有理解清楚运算法则。极限四则运算进行的前提是limf(x)=a limg(x)=b就是说极限必须是存在的。能带进去的情况是在成除的运算下且算出极限不为零和无穷!加减不可以是无穷且加减必须是独立的运算和成除结合一起的不能单独替换加减。不懂在问我