令(1-x)/x=t^2,则:1-x=xt^2,∴(1+t^2)x=1,∴x=1/(1+t^2), ∴dx=[2t/(1+t^2)^2]dt. ∴∫{1/√[x(1-x)]}dx =∫{[(1-x)+x]/√[x(1-x)]}dx =∫{√[(1-x)/x]+√[x/(1-x)]}dx =∫(t+1/t)[2t/(1+t^2)^2]dt =2∫[1/(1+t^2)]dt =2arctant+C =2arctan{√[(1-x)/x]}+C.