又这个题不会还是同一个人发的吧,
证明:延长CE,交BA的延长线于F.
∠ABD=∠ACF(均为角F的余角);AB=AC;∠BAD=∠CAF=90°.
则⊿BAD≌⊿CAF,BD=CF.-----------------------------------(1)
∠CBE=∠FBE;BE=BE;∠BEC=∠BEF=90度.
则⊿BEC≌⊿BEF,CE=EF,CF=2CE.-----------------------(2)
所以,BD=2CE.
:△ABC中,∠BAC=90°,AB=AC,故∠ABC=∠ACB=45°
BD是角平分线,CE⊥BD于E. 得:∠ABD=∠EBC=∠ECD=22.5°
△ABD∽△ECD∽△EBC 故 CE/AB=DC/BD CE/BE=DC/BC AD/DE=BD/DC
∠ABD=∠ACF(均为角F的余角);AB=AC;∠BAD=∠CAF=90°.
则⊿BAD≌⊿CAF,BD=CF
x∠CBE=∠FBE;BE=BE;∠BEC=∠BEF=90度.
则⊿BEC≌⊿BEF,CE=EF,CF=2CE
所以,BD=2CE.
用勾股定理和三角形面积相等
做DF⊥BC,垂点为F
∵BD平分角ABC
∴AD=DF
设AD=DF=x
有勾股定理得CD=√2x
∴AB=AC=(1+√2)x
BC=(√2+2)x
BD=√(4+2√2)x
由三角形面积相等,得BC*DF=BD*CE
得CE=√(1+√2)x
∴BD=2CE
证明:延长CE,交BA的延长线于F.
∠ABD=∠ACF(均为角F的余角);AB=AC;∠BAD=∠CAF=90°.
则⊿BAD≌⊿CAF,BD=CF.-----------------------------------(1)
∠CBE=∠FBE;BE=BE;∠BEC=∠BEF=90度.
则⊿BEC≌⊿BEF,CE=EF,CF=2CE.-----------------------(2)
所以,BD=2CE
证明:延长CE,交BA的延长线于F.
∠ABD=∠ACF(均为角F的余角);AB=AC;∠BAD=∠CAF=90°
所以⊿BAD≌⊿CAF,BD=CF
∠CBE=∠FBE;BE=BE;∠BEC=∠BEF=90度.
所以⊿BEC≌⊿BEF,CE=EF,CF=2CE
所以,BD=2CE