令√[(1-x)/(1+x)]=t则x=(1-t2)/(1+t2),dx=[-4t/(1+t2)2]dt原式=∫ -4t2/[(1-t2)(1+t2)] dt=2∫ 1/(1+t2)dt -∫1/(1-t) dt-∫ 1/(1+t) dt=2arctant+ln|1-t|-ln|1+t|+C再把t...
令x=3sect,之后三角换元,得√(x²-9)/9x+C